* In AUC and AUCPR metrics, detect whether weights are per-instance or per-group * Fix C++ style check * Add a test for weighted AUC
577 lines
19 KiB
C++
577 lines
19 KiB
C++
/*!
|
|
* Copyright 2015 by Contributors
|
|
* \file rank_metric.cc
|
|
* \brief prediction rank based metrics.
|
|
* \author Kailong Chen, Tianqi Chen
|
|
*/
|
|
#include <rabit/rabit.h>
|
|
#include <xgboost/metric.h>
|
|
#include <dmlc/registry.h>
|
|
#include <cmath>
|
|
|
|
#include <vector>
|
|
|
|
#include "../common/host_device_vector.h"
|
|
#include "../common/math.h"
|
|
|
|
namespace {
|
|
|
|
/*
|
|
* Adapter to access instance weights.
|
|
*
|
|
* - For ranking task, weights are per-group
|
|
* - For binary classification task, weights are per-instance
|
|
*
|
|
* WeightPolicy::GetWeightOfInstance() :
|
|
* get weight associated with an individual instance, using index into
|
|
* `info.weights`
|
|
* WeightPolicy::GetWeightOfSortedRecord() :
|
|
* get weight associated with an individual instance, using index into
|
|
* sorted records `rec` (in ascending order of predicted labels). `rec` is
|
|
* of type PredIndPairContainer
|
|
*/
|
|
|
|
using PredIndPairContainer
|
|
= std::vector<std::pair<xgboost::bst_float, unsigned>>;
|
|
|
|
class PerInstanceWeightPolicy {
|
|
public:
|
|
inline static xgboost::bst_float
|
|
GetWeightOfInstance(const xgboost::MetaInfo& info,
|
|
unsigned instance_id, unsigned group_id) {
|
|
return info.GetWeight(instance_id);
|
|
}
|
|
inline static xgboost::bst_float
|
|
GetWeightOfSortedRecord(const xgboost::MetaInfo& info,
|
|
const PredIndPairContainer& rec,
|
|
unsigned record_id, unsigned group_id) {
|
|
return info.GetWeight(rec[record_id].second);
|
|
}
|
|
};
|
|
|
|
class PerGroupWeightPolicy {
|
|
public:
|
|
inline static xgboost::bst_float
|
|
GetWeightOfInstance(const xgboost::MetaInfo& info,
|
|
unsigned instance_id, unsigned group_id) {
|
|
return info.GetWeight(group_id);
|
|
}
|
|
|
|
inline static xgboost::bst_float
|
|
GetWeightOfSortedRecord(const xgboost::MetaInfo& info,
|
|
const PredIndPairContainer& rec,
|
|
unsigned record_id, unsigned group_id) {
|
|
return info.GetWeight(group_id);
|
|
}
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
namespace xgboost {
|
|
namespace metric {
|
|
// tag the this file, used by force static link later.
|
|
DMLC_REGISTRY_FILE_TAG(rank_metric);
|
|
|
|
/*! \brief AMS: also records best threshold */
|
|
struct EvalAMS : public Metric {
|
|
public:
|
|
explicit EvalAMS(const char* param) {
|
|
CHECK(param != nullptr) // NOLINT
|
|
<< "AMS must be in format ams@k";
|
|
ratio_ = atof(param);
|
|
std::ostringstream os;
|
|
os << "ams@" << ratio_;
|
|
name_ = os.str();
|
|
}
|
|
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) override {
|
|
CHECK(!distributed) << "metric AMS do not support distributed evaluation";
|
|
using namespace std; // NOLINT(*)
|
|
|
|
const auto ndata = static_cast<bst_omp_uint>(info.labels_.Size());
|
|
std::vector<std::pair<bst_float, unsigned> > rec(ndata);
|
|
|
|
const std::vector<bst_float>& h_preds = preds.HostVector();
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
|
rec[i] = std::make_pair(h_preds[i], i);
|
|
}
|
|
std::sort(rec.begin(), rec.end(), common::CmpFirst);
|
|
auto ntop = static_cast<unsigned>(ratio_ * ndata);
|
|
if (ntop == 0) ntop = ndata;
|
|
const double br = 10.0;
|
|
unsigned thresindex = 0;
|
|
double s_tp = 0.0, b_fp = 0.0, tams = 0.0;
|
|
const auto& labels = info.labels_.HostVector();
|
|
for (unsigned i = 0; i < static_cast<unsigned>(ndata-1) && i < ntop; ++i) {
|
|
const unsigned ridx = rec[i].second;
|
|
const bst_float wt = info.GetWeight(ridx);
|
|
if (labels[ridx] > 0.5f) {
|
|
s_tp += wt;
|
|
} else {
|
|
b_fp += wt;
|
|
}
|
|
if (rec[i].first != rec[i + 1].first) {
|
|
double ams = sqrt(2 * ((s_tp + b_fp + br) * log(1.0 + s_tp / (b_fp + br)) - s_tp));
|
|
if (tams < ams) {
|
|
thresindex = i;
|
|
tams = ams;
|
|
}
|
|
}
|
|
}
|
|
if (ntop == ndata) {
|
|
LOG(INFO) << "best-ams-ratio=" << static_cast<bst_float>(thresindex) / ndata;
|
|
return static_cast<bst_float>(tams);
|
|
} else {
|
|
return static_cast<bst_float>(
|
|
sqrt(2 * ((s_tp + b_fp + br) * log(1.0 + s_tp/(b_fp + br)) - s_tp)));
|
|
}
|
|
}
|
|
|
|
const char* Name() const override {
|
|
return name_.c_str();
|
|
}
|
|
|
|
private:
|
|
std::string name_;
|
|
float ratio_;
|
|
};
|
|
|
|
/*! \brief Area Under Curve, for both classification and rank */
|
|
struct EvalAuc : public Metric {
|
|
private:
|
|
template <typename WeightPolicy>
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) {
|
|
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
|
CHECK_EQ(preds.Size(), info.labels_.Size())
|
|
<< "label size predict size not match";
|
|
std::vector<unsigned> tgptr(2, 0);
|
|
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
|
|
|
|
const std::vector<unsigned> &gptr = info.group_ptr_.empty() ? tgptr : info.group_ptr_;
|
|
CHECK_EQ(gptr.back(), info.labels_.Size())
|
|
<< "EvalAuc: group structure must match number of prediction";
|
|
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
|
// sum of all AUC's across all query groups
|
|
double sum_auc = 0.0;
|
|
int auc_error = 0;
|
|
// each thread takes a local rec
|
|
std::vector<std::pair<bst_float, unsigned>> rec;
|
|
const auto& labels = info.labels_.HostVector();
|
|
const std::vector<bst_float>& h_preds = preds.HostVector();
|
|
for (bst_omp_uint group_id = 0; group_id < ngroup; ++group_id) {
|
|
rec.clear();
|
|
for (unsigned j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
|
rec.emplace_back(h_preds[j], j);
|
|
}
|
|
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
|
// calculate AUC
|
|
double sum_pospair = 0.0;
|
|
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
|
|
for (size_t j = 0; j < rec.size(); ++j) {
|
|
const bst_float wt
|
|
= WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
|
const bst_float ctr = labels[rec[j].second];
|
|
// keep bucketing predictions in same bucket
|
|
if (j != 0 && rec[j].first != rec[j - 1].first) {
|
|
sum_pospair += buf_neg * (sum_npos + buf_pos *0.5);
|
|
sum_npos += buf_pos;
|
|
sum_nneg += buf_neg;
|
|
buf_neg = buf_pos = 0.0f;
|
|
}
|
|
buf_pos += ctr * wt;
|
|
buf_neg += (1.0f - ctr) * wt;
|
|
}
|
|
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
|
sum_npos += buf_pos;
|
|
sum_nneg += buf_neg;
|
|
// check weird conditions
|
|
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
|
|
auc_error = 1;
|
|
continue;
|
|
}
|
|
// this is the AUC
|
|
sum_auc += sum_pospair / (sum_npos * sum_nneg);
|
|
}
|
|
CHECK(!auc_error)
|
|
<< "AUC: the dataset only contains pos or neg samples";
|
|
/* Report average AUC across all groups */
|
|
if (distributed) {
|
|
bst_float dat[2];
|
|
dat[0] = static_cast<bst_float>(sum_auc);
|
|
dat[1] = static_cast<bst_float>(ngroup);
|
|
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
|
return dat[0] / dat[1];
|
|
} else {
|
|
return static_cast<bst_float>(sum_auc) / ngroup;
|
|
}
|
|
}
|
|
|
|
public:
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) override {
|
|
// For ranking task, weights are per-group
|
|
// For binary classification task, weights are per-instance
|
|
const bool is_ranking_task =
|
|
!info.group_ptr_.empty() && info.weights_.Size() != info.num_row_;
|
|
if (is_ranking_task) {
|
|
return Eval<PerGroupWeightPolicy>(preds, info, distributed);
|
|
} else {
|
|
return Eval<PerInstanceWeightPolicy>(preds, info, distributed);
|
|
}
|
|
}
|
|
const char* Name() const override {
|
|
return "auc";
|
|
}
|
|
};
|
|
|
|
/*! \brief Evaluate rank list */
|
|
struct EvalRankList : public Metric {
|
|
public:
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) override {
|
|
CHECK_EQ(preds.Size(), info.labels_.Size())
|
|
<< "label size predict size not match";
|
|
// quick consistency when group is not available
|
|
std::vector<unsigned> tgptr(2, 0);
|
|
tgptr[1] = static_cast<unsigned>(preds.Size());
|
|
const std::vector<unsigned> &gptr = info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
|
|
CHECK_NE(gptr.size(), 0U) << "must specify group when constructing rank file";
|
|
CHECK_EQ(gptr.back(), preds.Size())
|
|
<< "EvalRanklist: group structure must match number of prediction";
|
|
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
|
// sum statistics
|
|
double sum_metric = 0.0f;
|
|
const auto& labels = info.labels_.HostVector();
|
|
|
|
const std::vector<bst_float>& h_preds = preds.HostVector();
|
|
#pragma omp parallel reduction(+:sum_metric)
|
|
{
|
|
// each thread takes a local rec
|
|
std::vector< std::pair<bst_float, unsigned> > rec;
|
|
#pragma omp for schedule(static)
|
|
for (bst_omp_uint k = 0; k < ngroup; ++k) {
|
|
rec.clear();
|
|
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
|
|
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
|
|
}
|
|
sum_metric += this->EvalMetric(rec);
|
|
}
|
|
}
|
|
if (distributed) {
|
|
bst_float dat[2];
|
|
dat[0] = static_cast<bst_float>(sum_metric);
|
|
dat[1] = static_cast<bst_float>(ngroup);
|
|
// approximately estimate the metric using mean
|
|
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
|
return dat[0] / dat[1];
|
|
} else {
|
|
return static_cast<bst_float>(sum_metric) / ngroup;
|
|
}
|
|
}
|
|
const char* Name() const override {
|
|
return name_.c_str();
|
|
}
|
|
|
|
protected:
|
|
explicit EvalRankList(const char* name, const char* param) {
|
|
using namespace std; // NOLINT(*)
|
|
minus_ = false;
|
|
if (param != nullptr) {
|
|
std::ostringstream os;
|
|
os << name << '@' << param;
|
|
name_ = os.str();
|
|
if (sscanf(param, "%u[-]?", &topn_) != 1) {
|
|
topn_ = std::numeric_limits<unsigned>::max();
|
|
}
|
|
if (param[strlen(param) - 1] == '-') {
|
|
minus_ = true;
|
|
}
|
|
} else {
|
|
name_ = name;
|
|
topn_ = std::numeric_limits<unsigned>::max();
|
|
}
|
|
}
|
|
/*! \return evaluation metric, given the pair_sort record, (pred,label) */
|
|
virtual bst_float EvalMetric(std::vector<std::pair<bst_float, unsigned> > &pair_sort) const = 0; // NOLINT(*)
|
|
|
|
protected:
|
|
unsigned topn_;
|
|
std::string name_;
|
|
bool minus_;
|
|
};
|
|
|
|
/*! \brief Precision at N, for both classification and rank */
|
|
struct EvalPrecision : public EvalRankList{
|
|
public:
|
|
explicit EvalPrecision(const char *name) : EvalRankList("pre", name) {}
|
|
|
|
protected:
|
|
bst_float EvalMetric(std::vector< std::pair<bst_float, unsigned> > &rec) const override {
|
|
// calculate Precision
|
|
std::sort(rec.begin(), rec.end(), common::CmpFirst);
|
|
unsigned nhit = 0;
|
|
for (size_t j = 0; j < rec.size() && j < this->topn_; ++j) {
|
|
nhit += (rec[j].second != 0);
|
|
}
|
|
return static_cast<bst_float>(nhit) / topn_;
|
|
}
|
|
};
|
|
|
|
/*! \brief NDCG: Normalized Discounted Cumulative Gain at N */
|
|
struct EvalNDCG : public EvalRankList{
|
|
public:
|
|
explicit EvalNDCG(const char *name) : EvalRankList("ndcg", name) {}
|
|
|
|
protected:
|
|
inline bst_float CalcDCG(const std::vector<std::pair<bst_float, unsigned> > &rec) const {
|
|
double sumdcg = 0.0;
|
|
for (size_t i = 0; i < rec.size() && i < this->topn_; ++i) {
|
|
const unsigned rel = rec[i].second;
|
|
if (rel != 0) {
|
|
sumdcg += ((1 << rel) - 1) / std::log2(i + 2.0);
|
|
}
|
|
}
|
|
return sumdcg;
|
|
}
|
|
virtual bst_float EvalMetric(std::vector<std::pair<bst_float, unsigned> > &rec) const { // NOLINT(*)
|
|
XGBOOST_PARALLEL_STABLE_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
|
bst_float dcg = this->CalcDCG(rec);
|
|
XGBOOST_PARALLEL_STABLE_SORT(rec.begin(), rec.end(), common::CmpSecond);
|
|
bst_float idcg = this->CalcDCG(rec);
|
|
if (idcg == 0.0f) {
|
|
if (minus_) {
|
|
return 0.0f;
|
|
} else {
|
|
return 1.0f;
|
|
}
|
|
}
|
|
return dcg/idcg;
|
|
}
|
|
};
|
|
|
|
/*! \brief Mean Average Precision at N, for both classification and rank */
|
|
struct EvalMAP : public EvalRankList {
|
|
public:
|
|
explicit EvalMAP(const char *name) : EvalRankList("map", name) {}
|
|
|
|
protected:
|
|
bst_float EvalMetric(std::vector< std::pair<bst_float, unsigned> > &rec) const override {
|
|
std::sort(rec.begin(), rec.end(), common::CmpFirst);
|
|
unsigned nhits = 0;
|
|
double sumap = 0.0;
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
if (rec[i].second != 0) {
|
|
nhits += 1;
|
|
if (i < this->topn_) {
|
|
sumap += static_cast<bst_float>(nhits) / (i + 1);
|
|
}
|
|
}
|
|
}
|
|
if (nhits != 0) {
|
|
sumap /= nhits;
|
|
return static_cast<bst_float>(sumap);
|
|
} else {
|
|
if (minus_) {
|
|
return 0.0f;
|
|
} else {
|
|
return 1.0f;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/*! \brief Cox: Partial likelihood of the Cox proportional hazards model */
|
|
struct EvalCox : public Metric {
|
|
public:
|
|
EvalCox() = default;
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) override {
|
|
CHECK(!distributed) << "Cox metric does not support distributed evaluation";
|
|
using namespace std; // NOLINT(*)
|
|
|
|
const auto ndata = static_cast<bst_omp_uint>(info.labels_.Size());
|
|
const std::vector<size_t> &label_order = info.LabelAbsSort();
|
|
|
|
// pre-compute a sum for the denominator
|
|
double exp_p_sum = 0; // we use double because we might need the precision with large datasets
|
|
|
|
const std::vector<bst_float>& h_preds = preds.HostVector();
|
|
for (omp_ulong i = 0; i < ndata; ++i) {
|
|
exp_p_sum += h_preds[i];
|
|
}
|
|
|
|
double out = 0;
|
|
double accumulated_sum = 0;
|
|
bst_omp_uint num_events = 0;
|
|
const auto& labels = info.labels_.HostVector();
|
|
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
|
const size_t ind = label_order[i];
|
|
const auto label = labels[ind];
|
|
if (label > 0) {
|
|
out -= log(h_preds[ind]) - log(exp_p_sum);
|
|
++num_events;
|
|
}
|
|
|
|
// only update the denominator after we move forward in time (labels are sorted)
|
|
accumulated_sum += h_preds[ind];
|
|
if (i == ndata - 1 || std::abs(label) < std::abs(labels[label_order[i + 1]])) {
|
|
exp_p_sum -= accumulated_sum;
|
|
accumulated_sum = 0;
|
|
}
|
|
}
|
|
|
|
return out/num_events; // normalize by the number of events
|
|
}
|
|
|
|
const char* Name() const override {
|
|
return "cox-nloglik";
|
|
}
|
|
};
|
|
|
|
/*! \brief Area Under PR Curve, for both classification and rank */
|
|
struct EvalAucPR : public Metric {
|
|
// implementation of AUC-PR for weighted data
|
|
// translated from PRROC R Package
|
|
// see https://doi.org/10.1371/journal.pone.0092209
|
|
private:
|
|
template <typename WeightPolicy>
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) {
|
|
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
|
CHECK_EQ(preds.Size(), info.labels_.Size())
|
|
<< "label size predict size not match";
|
|
std::vector<unsigned> tgptr(2, 0);
|
|
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
|
|
const std::vector<unsigned> &gptr =
|
|
info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
|
|
CHECK_EQ(gptr.back(), info.labels_.Size())
|
|
<< "EvalAucPR: group structure must match number of prediction";
|
|
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
|
// sum of all AUC's across all query groups
|
|
double sum_auc = 0.0;
|
|
int auc_error = 0;
|
|
// each thread takes a local rec
|
|
std::vector<std::pair<bst_float, unsigned>> rec;
|
|
const auto& h_labels = info.labels_.HostVector();
|
|
const std::vector<bst_float>& h_preds = preds.HostVector();
|
|
|
|
for (bst_omp_uint group_id = 0; group_id < ngroup; ++group_id) {
|
|
double total_pos = 0.0;
|
|
double total_neg = 0.0;
|
|
rec.clear();
|
|
for (unsigned j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
|
const bst_float wt
|
|
= WeightPolicy::GetWeightOfInstance(info, j, group_id);
|
|
total_pos += wt * h_labels[j];
|
|
total_neg += wt * (1.0f - h_labels[j]);
|
|
rec.emplace_back(h_preds[j], j);
|
|
}
|
|
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
|
// we need pos > 0 && neg > 0
|
|
if (0.0 == total_pos || 0.0 == total_neg) {
|
|
auc_error = 1;
|
|
}
|
|
// calculate AUC
|
|
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
|
|
for (size_t j = 0; j < rec.size(); ++j) {
|
|
const bst_float wt
|
|
= WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
|
tp += wt * h_labels[rec[j].second];
|
|
fp += wt * (1.0f - h_labels[rec[j].second]);
|
|
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) || j == rec.size() - 1) {
|
|
if (tp == prevtp) {
|
|
a = 1.0;
|
|
b = 0.0;
|
|
} else {
|
|
h = (fp - prevfp) / (tp - prevtp);
|
|
a = 1.0 + h;
|
|
b = (prevfp - h * prevtp) / total_pos;
|
|
}
|
|
if (0.0 != b) {
|
|
sum_auc += (tp / total_pos - prevtp / total_pos -
|
|
b / a * (std::log(a * tp / total_pos + b) -
|
|
std::log(a * prevtp / total_pos + b))) / a;
|
|
} else {
|
|
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
|
|
}
|
|
prevtp = tp;
|
|
prevfp = fp;
|
|
}
|
|
}
|
|
// sanity check
|
|
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
|
|
CHECK(!auc_error) << "AUC-PR: error in calculation";
|
|
}
|
|
}
|
|
CHECK(!auc_error) << "AUC-PR: the dataset only contains pos or neg samples";
|
|
/* Report average AUC across all groups */
|
|
if (distributed) {
|
|
bst_float dat[2];
|
|
dat[0] = static_cast<bst_float>(sum_auc);
|
|
dat[1] = static_cast<bst_float>(ngroup);
|
|
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
|
CHECK_LE(dat[0], dat[1]) << "AUC-PR: AUC > 1.0";
|
|
return dat[0] / dat[1];
|
|
} else {
|
|
CHECK_LE(sum_auc, static_cast<double>(ngroup)) << "AUC-PR: AUC > 1.0";
|
|
return static_cast<bst_float>(sum_auc) / ngroup;
|
|
}
|
|
}
|
|
|
|
public:
|
|
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
bool distributed) override {
|
|
// For ranking task, weights are per-group
|
|
// For binary classification task, weights are per-instance
|
|
const bool is_ranking_task =
|
|
!info.group_ptr_.empty() && info.weights_.Size() != info.num_row_;
|
|
if (is_ranking_task) {
|
|
return Eval<PerGroupWeightPolicy>(preds, info, distributed);
|
|
} else {
|
|
return Eval<PerInstanceWeightPolicy>(preds, info, distributed);
|
|
}
|
|
}
|
|
const char *Name() const override { return "aucpr"; }
|
|
};
|
|
|
|
|
|
XGBOOST_REGISTER_METRIC(AMS, "ams")
|
|
.describe("AMS metric for higgs.")
|
|
.set_body([](const char* param) { return new EvalAMS(param); });
|
|
|
|
XGBOOST_REGISTER_METRIC(Auc, "auc")
|
|
.describe("Area under curve for both classification and rank.")
|
|
.set_body([](const char* param) { return new EvalAuc(); });
|
|
|
|
XGBOOST_REGISTER_METRIC(AucPR, "aucpr")
|
|
.describe("Area under PR curve for both classification and rank.")
|
|
.set_body([](const char* param) { return new EvalAucPR(); });
|
|
|
|
XGBOOST_REGISTER_METRIC(Precision, "pre")
|
|
.describe("precision@k for rank.")
|
|
.set_body([](const char* param) { return new EvalPrecision(param); });
|
|
|
|
XGBOOST_REGISTER_METRIC(NDCG, "ndcg")
|
|
.describe("ndcg@k for rank.")
|
|
.set_body([](const char* param) { return new EvalNDCG(param); });
|
|
|
|
XGBOOST_REGISTER_METRIC(MAP, "map")
|
|
.describe("map@k for rank.")
|
|
.set_body([](const char* param) { return new EvalMAP(param); });
|
|
|
|
XGBOOST_REGISTER_METRIC(Cox, "cox-nloglik")
|
|
.describe("Negative log partial likelihood of Cox proportioanl hazards model.")
|
|
.set_body([](const char* param) { return new EvalCox(); });
|
|
} // namespace metric
|
|
} // namespace xgboost
|