xgboost/tests/cpp/common/test_hist_util.cc
2020-02-18 16:49:17 +13:00

344 lines
10 KiB
C++

#include <gtest/gtest.h>
#include <vector>
#include <string>
#include <utility>
#include "../../../src/common/hist_util.h"
#include "../helpers.h"
#include "test_hist_util.h"
namespace xgboost {
namespace common {
size_t GetNThreads() {
size_t nthreads;
#pragma omp parallel
{
#pragma omp master
nthreads = omp_get_num_threads();
}
return nthreads;
}
TEST(ParallelGHistBuilder, Reset) {
constexpr size_t kBins = 10;
constexpr size_t kNodes = 5;
constexpr size_t kNodesExtended = 10;
constexpr size_t kTasksPerNode = 10;
constexpr double kValue = 1.0;
const size_t nthreads = GetNThreads();
HistCollection collection;
collection.Init(kBins);
for(size_t inode = 0; inode < kNodesExtended; inode++) {
collection.AddHistRow(inode);
}
ParallelGHistBuilder hist_builder;
hist_builder.Init(kBins);
std::vector<GHistRow> target_hist(kNodes);
for(size_t i = 0; i < target_hist.size(); ++i) {
target_hist[i] = collection[i];
}
common::BlockedSpace2d space(kNodes, [&](size_t node) { return kTasksPerNode; }, 1);
hist_builder.Reset(nthreads, kNodes, space, target_hist);
common::ParallelFor2d(space, nthreads, [&](size_t inode, common::Range1d r) {
const size_t tid = omp_get_thread_num();
GHistRow hist = hist_builder.GetInitializedHist(tid, inode);
// fill hist by some non-null values
for(size_t j = 0; j < kBins; ++j) {
hist[j].Add(kValue, kValue);
}
});
// reset and extend buffer
target_hist.resize(kNodesExtended);
for(size_t i = 0; i < target_hist.size(); ++i) {
target_hist[i] = collection[i];
}
common::BlockedSpace2d space2(kNodesExtended, [&](size_t node) { return kTasksPerNode; }, 1);
hist_builder.Reset(nthreads, kNodesExtended, space2, target_hist);
common::ParallelFor2d(space2, nthreads, [&](size_t inode, common::Range1d r) {
const size_t tid = omp_get_thread_num();
GHistRow hist = hist_builder.GetInitializedHist(tid, inode);
// fill hist by some non-null values
for(size_t j = 0; j < kBins; ++j) {
ASSERT_EQ(0.0, hist[j].GetGrad());
ASSERT_EQ(0.0, hist[j].GetHess());
}
});
}
TEST(ParallelGHistBuilder, ReduceHist) {
constexpr size_t kBins = 10;
constexpr size_t kNodes = 5;
constexpr size_t kTasksPerNode = 10;
constexpr double kValue = 1.0;
const size_t nthreads = GetNThreads();
HistCollection collection;
collection.Init(kBins);
for(size_t inode = 0; inode < kNodes; inode++) {
collection.AddHistRow(inode);
}
ParallelGHistBuilder hist_builder;
hist_builder.Init(kBins);
std::vector<GHistRow> target_hist(kNodes);
for(size_t i = 0; i < target_hist.size(); ++i) {
target_hist[i] = collection[i];
}
common::BlockedSpace2d space(kNodes, [&](size_t node) { return kTasksPerNode; }, 1);
hist_builder.Reset(nthreads, kNodes, space, target_hist);
// Simple analog of BuildHist function, works in parallel for both tree-nodes and data in node
common::ParallelFor2d(space, nthreads, [&](size_t inode, common::Range1d r) {
const size_t tid = omp_get_thread_num();
GHistRow hist = hist_builder.GetInitializedHist(tid, inode);
for(size_t i = 0; i < kBins; ++i) {
hist[i].Add(kValue, kValue);
}
});
for(size_t inode = 0; inode < kNodes; inode++) {
hist_builder.ReduceHist(inode, 0, kBins);
// We had kTasksPerNode tasks to add kValue to each bin for each node
// So, after reducing we expect to have (kValue * kTasksPerNode) in each node
for(size_t i = 0; i < kBins; ++i) {
ASSERT_EQ(kValue * kTasksPerNode, collection[inode][i].GetGrad());
ASSERT_EQ(kValue * kTasksPerNode, collection[inode][i].GetHess());
}
}
}
TEST(CutsBuilder, SearchGroupInd) {
size_t constexpr kNumGroups = 4;
size_t constexpr kRows = 17;
size_t constexpr kCols = 15;
auto pp_dmat = CreateDMatrix(kRows, kCols, 0);
std::shared_ptr<DMatrix> p_mat {*pp_dmat};
std::vector<bst_int> group(kNumGroups);
group[0] = 2;
group[1] = 3;
group[2] = 7;
group[3] = 5;
p_mat->Info().SetInfo(
"group", group.data(), DataType::kUInt32, kNumGroups);
HistogramCuts hmat;
size_t group_ind = CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 0);
ASSERT_EQ(group_ind, 0);
group_ind = CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 5);
ASSERT_EQ(group_ind, 2);
EXPECT_ANY_THROW(CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 17));
delete pp_dmat;
}
TEST(SparseCuts, SingleThreadedBuild) {
size_t constexpr kRows = 267;
size_t constexpr kCols = 31;
size_t constexpr kBins = 256;
auto pp_dmat = CreateDMatrix(kRows, kCols, 0);
std::shared_ptr<DMatrix> p_fmat {*pp_dmat};
common::GHistIndexMatrix hmat;
hmat.Init(p_fmat.get(), kBins);
HistogramCuts cuts;
SparseCuts indices(&cuts);
auto const& page = *(p_fmat->GetBatches<xgboost::CSCPage>().begin());
indices.SingleThreadBuild(page, p_fmat->Info(), kBins, false, 0, page.Size(), 0);
ASSERT_EQ(hmat.cut.Ptrs().size(), cuts.Ptrs().size());
ASSERT_EQ(hmat.cut.Ptrs(), cuts.Ptrs());
ASSERT_EQ(hmat.cut.Values(), cuts.Values());
ASSERT_EQ(hmat.cut.MinValues(), cuts.MinValues());
delete pp_dmat;
}
TEST(SparseCuts, MultiThreadedBuild) {
size_t constexpr kRows = 17;
size_t constexpr kCols = 15;
size_t constexpr kBins = 255;
omp_ulong ori_nthreads = omp_get_max_threads();
omp_set_num_threads(16);
auto Compare =
#if defined(_MSC_VER) // msvc fails to capture
[kBins](DMatrix* p_fmat) {
#else
[](DMatrix* p_fmat) {
#endif
HistogramCuts threaded_container;
SparseCuts threaded_indices(&threaded_container);
threaded_indices.Build(p_fmat, kBins);
HistogramCuts container;
SparseCuts indices(&container);
auto const& page = *(p_fmat->GetBatches<xgboost::CSCPage>().begin());
indices.SingleThreadBuild(page, p_fmat->Info(), kBins, false, 0, page.Size(), 0);
ASSERT_EQ(container.Ptrs().size(), threaded_container.Ptrs().size());
ASSERT_EQ(container.Values().size(), threaded_container.Values().size());
for (uint32_t i = 0; i < container.Ptrs().size(); ++i) {
ASSERT_EQ(container.Ptrs()[i], threaded_container.Ptrs()[i]);
}
for (uint32_t i = 0; i < container.Values().size(); ++i) {
ASSERT_EQ(container.Values()[i], threaded_container.Values()[i]);
}
};
{
auto pp_mat = CreateDMatrix(kRows, kCols, 0);
DMatrix* p_fmat = (*pp_mat).get();
Compare(p_fmat);
delete pp_mat;
}
{
auto pp_mat = CreateDMatrix(kRows, kCols, 0.0001);
DMatrix* p_fmat = (*pp_mat).get();
Compare(p_fmat);
delete pp_mat;
}
omp_set_num_threads(ori_nthreads);
}
TEST(hist_util, DenseCutsCategorical) {
int categorical_sizes[] = {2, 6, 8, 12};
int num_bins = 256;
int sizes[] = {25, 100, 1000};
for (auto n : sizes) {
for (auto num_categories : categorical_sizes) {
auto x = GenerateRandomCategoricalSingleColumn(n, num_categories);
std::vector<float> x_sorted(x);
std::sort(x_sorted.begin(), x_sorted.end());
auto dmat = GetDMatrixFromData(x, n, 1);
HistogramCuts cuts;
DenseCuts dense(&cuts);
dense.Build(dmat.get(), num_bins);
auto cuts_from_sketch = cuts.Values();
EXPECT_LT(cuts.MinValues()[0], x_sorted.front());
EXPECT_GT(cuts_from_sketch.front(), x_sorted.front());
EXPECT_GE(cuts_from_sketch.back(), x_sorted.back());
EXPECT_EQ(cuts_from_sketch.size(), num_categories);
}
}
}
TEST(hist_util, DenseCutsAccuracyTest) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
for (auto num_bins : bin_sizes) {
HistogramCuts cuts;
DenseCuts dense(&cuts);
dense.Build(dmat.get(), num_bins);
ValidateCuts(cuts, x, num_rows, num_columns, num_bins);
}
}
}
TEST(hist_util, DenseCutsExternalMemory) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
dmlc::TemporaryDirectory tmpdir;
auto dmat =
GetExternalMemoryDMatrixFromData(x, num_rows, num_columns, 50, tmpdir);
for (auto num_bins : bin_sizes) {
HistogramCuts cuts;
DenseCuts dense(&cuts);
dense.Build(dmat.get(), num_bins);
ValidateCuts(cuts, x, num_rows, num_columns, num_bins);
}
}
}
TEST(hist_util, SparseCutsAccuracyTest) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
for (auto num_bins : bin_sizes) {
HistogramCuts cuts;
SparseCuts sparse(&cuts);
sparse.Build(dmat.get(), num_bins);
ValidateCuts(cuts, x, num_rows, num_columns, num_bins);
}
}
}
TEST(hist_util, SparseCutsCategorical) {
int categorical_sizes[] = {2, 6, 8, 12};
int num_bins = 256;
int sizes[] = {25, 100, 1000};
for (auto n : sizes) {
for (auto num_categories : categorical_sizes) {
auto x = GenerateRandomCategoricalSingleColumn(n, num_categories);
std::vector<float> x_sorted(x);
std::sort(x_sorted.begin(), x_sorted.end());
auto dmat = GetDMatrixFromData(x, n, 1);
HistogramCuts cuts;
SparseCuts sparse(&cuts);
sparse.Build(dmat.get(), num_bins);
auto cuts_from_sketch = cuts.Values();
EXPECT_LT(cuts.MinValues()[0], x_sorted.front());
EXPECT_GT(cuts_from_sketch.front(), x_sorted.front());
EXPECT_GE(cuts_from_sketch.back(), x_sorted.back());
EXPECT_EQ(cuts_from_sketch.size(), num_categories);
}
}
}
TEST(hist_util, SparseCutsExternalMemory) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
dmlc::TemporaryDirectory tmpdir;
auto dmat =
GetExternalMemoryDMatrixFromData(x, num_rows, num_columns, 50, tmpdir);
for (auto num_bins : bin_sizes) {
HistogramCuts cuts;
SparseCuts dense(&cuts);
dense.Build(dmat.get(), num_bins);
ValidateCuts(cuts, x, num_rows, num_columns, num_bins);
}
}
}
} // namespace common
} // namespace xgboost