xgboost/R-package/DESCRIPTION
Jiaming Yuan 28a466ab51
Fixes for R checks. (#8330)
- Bump configure.ac version.
- Remove amalgamation to reduce the build time for a single object with the added benefit that we can use parallel build during development.
- Fix c function prototype warning.
- Remove Windows automake file generation step to make the build script easier to understand.
2022-10-20 02:52:54 +08:00

71 lines
2.5 KiB
Plaintext

Package: xgboost
Type: Package
Title: Extreme Gradient Boosting
Version: 1.7.0.1
Date: 2022-10-18
Authors@R: c(
person("Tianqi", "Chen", role = c("aut"),
email = "tianqi.tchen@gmail.com"),
person("Tong", "He", role = c("aut"),
email = "hetong007@gmail.com"),
person("Michael", "Benesty", role = c("aut"),
email = "michael@benesty.fr"),
person("Vadim", "Khotilovich", role = c("aut"),
email = "khotilovich@gmail.com"),
person("Yuan", "Tang", role = c("aut"),
email = "terrytangyuan@gmail.com",
comment = c(ORCID = "0000-0001-5243-233X")),
person("Hyunsu", "Cho", role = c("aut"),
email = "chohyu01@cs.washington.edu"),
person("Kailong", "Chen", role = c("aut")),
person("Rory", "Mitchell", role = c("aut")),
person("Ignacio", "Cano", role = c("aut")),
person("Tianyi", "Zhou", role = c("aut")),
person("Mu", "Li", role = c("aut")),
person("Junyuan", "Xie", role = c("aut")),
person("Min", "Lin", role = c("aut")),
person("Yifeng", "Geng", role = c("aut")),
person("Yutian", "Li", role = c("aut")),
person("Jiaming", "Yuan", role = c("aut", "cre"),
email = "jm.yuan@outlook.com"),
person("XGBoost contributors", role = c("cph"),
comment = "base XGBoost implementation")
)
Maintainer: Jiaming Yuan <jm.yuan@outlook.com>
Description: Extreme Gradient Boosting, which is an efficient implementation
of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package is its R interface. The package includes efficient linear
model solver and tree learning algorithms. The package can automatically
do parallel computation on a single machine which could be more than 10
times faster than existing gradient boosting packages. It supports
various objective functions, including regression, classification and ranking.
The package is made to be extensible, so that users are also allowed to define
their own objectives easily.
License: Apache License (== 2.0) | file LICENSE
URL: https://github.com/dmlc/xgboost
BugReports: https://github.com/dmlc/xgboost/issues
NeedsCompilation: yes
VignetteBuilder: knitr
Suggests:
knitr,
rmarkdown,
ggplot2 (>= 1.0.1),
DiagrammeR (>= 0.9.0),
Ckmeans.1d.dp (>= 3.3.1),
vcd (>= 1.3),
testthat,
lintr,
igraph (>= 1.0.1),
float,
crayon,
titanic
Depends:
R (>= 3.3.0)
Imports:
Matrix (>= 1.1-0),
methods,
data.table (>= 1.9.6),
jsonlite (>= 1.0),
RoxygenNote: 7.1.1
SystemRequirements: GNU make, C++14