165 lines
5.8 KiB
Plaintext
165 lines
5.8 KiB
Plaintext
/*!
|
|
* Copyright 2017-2020 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/c_api.h>
|
|
#include <xgboost/predictor.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/learner.h>
|
|
#include <string>
|
|
|
|
#include "../helpers.h"
|
|
#include "../../../src/gbm/gbtree_model.h"
|
|
#include "../../../src/data/device_adapter.cuh"
|
|
#include "test_predictor.h"
|
|
|
|
namespace xgboost {
|
|
namespace predictor {
|
|
|
|
TEST(GPUPredictor, Basic) {
|
|
auto cpu_lparam = CreateEmptyGenericParam(-1);
|
|
auto gpu_lparam = CreateEmptyGenericParam(0);
|
|
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam));
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &cpu_lparam));
|
|
|
|
gpu_predictor->Configure({});
|
|
cpu_predictor->Configure({});
|
|
|
|
for (size_t i = 1; i < 33; i *= 2) {
|
|
int n_row = i, n_col = i;
|
|
auto dmat = RandomDataGenerator(n_row, n_col, 0).GenerateDMatrix();
|
|
|
|
LearnerModelParam param;
|
|
param.num_feature = n_col;
|
|
param.num_output_group = 1;
|
|
param.base_score = 0.5;
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(¶m);
|
|
|
|
// Test predict batch
|
|
PredictionCacheEntry gpu_out_predictions;
|
|
PredictionCacheEntry cpu_out_predictions;
|
|
|
|
gpu_predictor->PredictBatch(dmat.get(), &gpu_out_predictions, model, 0);
|
|
ASSERT_EQ(model.trees.size(), gpu_out_predictions.version);
|
|
cpu_predictor->PredictBatch(dmat.get(), &cpu_out_predictions, model, 0);
|
|
|
|
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.predictions.HostVector();
|
|
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.predictions.HostVector();
|
|
float abs_tolerance = 0.001;
|
|
for (int j = 0; j < gpu_out_predictions.predictions.Size(); j++) {
|
|
ASSERT_NEAR(gpu_out_predictions_h[j], cpu_out_predictions_h[j], abs_tolerance);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, EllpackBasic) {
|
|
size_t constexpr kCols {8};
|
|
for (size_t bins = 2; bins < 258; bins += 16) {
|
|
size_t rows = bins * 16;
|
|
auto p_m = RandomDataGenerator{rows, kCols, 0.0}
|
|
.Bins(bins)
|
|
.Device(0)
|
|
.GenerateDeviceDMatrix(true);
|
|
TestPredictionFromGradientIndex<EllpackPage>("gpu_predictor", rows, kCols, p_m);
|
|
TestPredictionFromGradientIndex<EllpackPage>("gpu_predictor", bins, kCols, p_m);
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, EllpackTraining) {
|
|
size_t constexpr kRows { 128 }, kCols { 16 }, kBins { 64 };
|
|
auto p_ellpack = RandomDataGenerator{kRows, kCols, 0.0}
|
|
.Bins(kBins)
|
|
.Device(0)
|
|
.GenerateDeviceDMatrix(true);
|
|
std::vector<HostDeviceVector<float>> storage(kCols);
|
|
auto columnar = RandomDataGenerator{kRows, kCols, 0.0}
|
|
.Device(0)
|
|
.GenerateColumnarArrayInterface(&storage);
|
|
auto adapter = data::CudfAdapter(columnar);
|
|
std::shared_ptr<DMatrix> p_full {
|
|
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)
|
|
};
|
|
TestTrainingPrediction(kRows, "gpu_hist", p_full, p_ellpack);
|
|
}
|
|
|
|
TEST(GPUPredictor, ExternalMemoryTest) {
|
|
auto lparam = CreateEmptyGenericParam(0);
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam));
|
|
gpu_predictor->Configure({});
|
|
|
|
LearnerModelParam param;
|
|
param.num_feature = 2;
|
|
const int n_classes = 3;
|
|
param.num_output_group = n_classes;
|
|
param.base_score = 0.5;
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(¶m, n_classes);
|
|
std::vector<std::unique_ptr<DMatrix>> dmats;
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
std::string file0 = tmpdir.path + "/big_0.libsvm";
|
|
std::string file1 = tmpdir.path + "/big_1.libsvm";
|
|
std::string file2 = tmpdir.path + "/big_2.libsvm";
|
|
dmats.push_back(CreateSparsePageDMatrix(9, 64UL, file0));
|
|
dmats.push_back(CreateSparsePageDMatrix(128, 128UL, file1));
|
|
dmats.push_back(CreateSparsePageDMatrix(1024, 1024UL, file2));
|
|
|
|
for (const auto& dmat: dmats) {
|
|
dmat->Info().base_margin_.Resize(dmat->Info().num_row_ * n_classes, 0.5);
|
|
PredictionCacheEntry out_predictions;
|
|
gpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
|
|
EXPECT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_ * n_classes);
|
|
const std::vector<float> &host_vector = out_predictions.predictions.ConstHostVector();
|
|
for (int i = 0; i < host_vector.size() / n_classes; i++) {
|
|
ASSERT_EQ(host_vector[i * n_classes], 2.0);
|
|
ASSERT_EQ(host_vector[i * n_classes + 1], 0.5);
|
|
ASSERT_EQ(host_vector[i * n_classes + 2], 0.5);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GPUPredictor, InplacePredictCupy) {
|
|
size_t constexpr kRows{128}, kCols{64};
|
|
RandomDataGenerator gen(kRows, kCols, 0.5);
|
|
gen.Device(0);
|
|
HostDeviceVector<float> data;
|
|
std::string interface_str = gen.GenerateArrayInterface(&data);
|
|
data::CupyAdapter x{interface_str};
|
|
TestInplacePrediction(x, "gpu_predictor", kRows, kCols, 0);
|
|
}
|
|
|
|
TEST(GPUPredictor, InplacePredictCuDF) {
|
|
size_t constexpr kRows{128}, kCols{64};
|
|
RandomDataGenerator gen(kRows, kCols, 0.5);
|
|
gen.Device(0);
|
|
std::vector<HostDeviceVector<float>> storage(kCols);
|
|
auto interface_str = gen.GenerateColumnarArrayInterface(&storage);
|
|
data::CudfAdapter x {interface_str};
|
|
TestInplacePrediction(x, "gpu_predictor", kRows, kCols, 0);
|
|
}
|
|
|
|
TEST(GPUPredictor, MGPU_InplacePredict) { // NOLINT
|
|
int32_t n_gpus = xgboost::common::AllVisibleGPUs();
|
|
if (n_gpus <= 1) {
|
|
LOG(WARNING) << "GPUPredictor.MGPU_InplacePredict is skipped.";
|
|
return;
|
|
}
|
|
size_t constexpr kRows{128}, kCols{64};
|
|
RandomDataGenerator gen(kRows, kCols, 0.5);
|
|
gen.Device(1);
|
|
HostDeviceVector<float> data;
|
|
std::string interface_str = gen.GenerateArrayInterface(&data);
|
|
data::CupyAdapter x{interface_str};
|
|
TestInplacePrediction(x, "gpu_predictor", kRows, kCols, 1);
|
|
EXPECT_THROW(TestInplacePrediction(x, "gpu_predictor", kRows, kCols, 0),
|
|
dmlc::Error);
|
|
}
|
|
|
|
} // namespace predictor
|
|
} // namespace xgboost
|