xgboost/tests/benchmark/generate_libsvm.py
Rong Ou 0afcc55d98 Support multiple batches in gpu_hist (#5014)
* Initial external memory training support for GPU Hist tree method.
2019-11-16 14:50:20 +08:00

88 lines
2.9 KiB
Python

"""Generate synthetic data in LibSVM format."""
import argparse
import io
import time
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
RNG = np.random.RandomState(2019)
def generate_data(args):
"""Generates the data."""
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
print("Sparsity {}".format(args.sparsity))
print("{}/{} train/test split".format(1.0 - args.test_size, args.test_size))
tmp = time.time()
n_informative = args.columns * 7 // 10
n_redundant = args.columns // 10
n_repeated = args.columns // 10
print("n_informative: {}, n_redundant: {}, n_repeated: {}".format(n_informative, n_redundant,
n_repeated))
x, y = make_classification(n_samples=args.rows, n_features=args.columns,
n_informative=n_informative, n_redundant=n_redundant,
n_repeated=n_repeated, shuffle=False, random_state=RNG)
print("Generate Time: {} seconds".format(time.time() - tmp))
tmp = time.time()
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=args.test_size,
random_state=RNG, shuffle=False)
print("Train/Test Split Time: {} seconds".format(time.time() - tmp))
tmp = time.time()
write_file('train.libsvm', x_train, y_train, args.sparsity)
print("Write Train Time: {} seconds".format(time.time() - tmp))
tmp = time.time()
write_file('test.libsvm', x_test, y_test, args.sparsity)
print("Write Test Time: {} seconds".format(time.time() - tmp))
def write_file(filename, x_data, y_data, sparsity):
with open(filename, 'w') as f:
for x, y in zip(x_data, y_data):
write_line(f, x, y, sparsity)
def write_line(f, x, y, sparsity):
with io.StringIO() as line:
line.write(str(y))
for i, col in enumerate(x):
if 0.0 < sparsity < 1.0:
if RNG.uniform(0, 1) > sparsity:
write_feature(line, i, col)
else:
write_feature(line, i, col)
line.write('\n')
f.write(line.getvalue())
def write_feature(line, index, feature):
line.write(' ')
line.write(str(index))
line.write(':')
line.write(str(feature))
def main():
"""The main function.
Defines and parses command line arguments and calls the generator.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--rows', type=int, default=1000000)
parser.add_argument('--columns', type=int, default=50)
parser.add_argument('--sparsity', type=float, default=0.0)
parser.add_argument('--test_size', type=float, default=0.01)
args = parser.parse_args()
generate_data(args)
if __name__ == '__main__':
main()