xgboost/R-package/R/xgb.save.R
Vadim Khotilovich 2b5b96d760 [R] various R code maintenance (#1964)
* [R] xgb.save must work when handle in nil but raw exists

* [R] print.xgb.Booster should still print other info when handle is nil

* [R] rename internal function xgb.Booster to xgb.Booster.handle to make its intent clear

* [R] rename xgb.Booster.check to xgb.Booster.complete and make it visible; more docs

* [R] storing evaluation_log should depend only on watchlist, not on verbose

* [R] reduce the excessive chattiness of unit tests

* [R] only disable some tests in windows when it's not 64-bit

* [R] clean-up xgb.DMatrix

* [R] test xgb.DMatrix loading from libsvm text file

* [R] store feature_names in xgb.Booster, use them from utility functions

* [R] remove non-functional co-occurence computation from xgb.importance

* [R] verbose=0 is enough without a callback

* [R] added forgotten xgb.Booster.complete.Rd; cran check fixes

* [R] update installation instructions
2017-01-21 11:22:46 -08:00

42 lines
1.6 KiB
R

#' Save xgboost model to binary file
#'
#' Save xgboost model to a file in binary format.
#'
#' @param model model object of \code{xgb.Booster} class.
#' @param fname name of the file to write.
#'
#' @details
#' This methods allows to save a model in an xgboost-internal binary format which is universal
#' among the various xgboost interfaces. In R, the saved model file could be read-in later
#' using either the \code{\link{xgb.load}} function or the \code{xgb_model} parameter
#' of \code{\link{xgb.train}}.
#'
#' Note: a model can also be saved as an R-object (e.g., by using \code{\link[base]{readRDS}}
#' or \code{\link[base]{save}}). However, it would then only be compatible with R, and
#' corresponding R-methods would need to be used to load it.
#'
#' @seealso
#' \code{\link{xgb.load}}, \code{\link{xgb.Booster.complete}}.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model')
#' pred <- predict(bst, test$data)
#' @export
xgb.save <- function(model, fname) {
if (typeof(fname) != "character")
stop("fname must be character")
if (class(model) != "xgb.Booster")
stop("the input must be xgb.Booster. Use xgb.DMatrix.save to save xgb.DMatrix object.")
model <- xgb.Booster.complete(model, saveraw = FALSE)
.Call("XGBoosterSaveModel_R", model$handle, fname, PACKAGE = "xgboost")
return(TRUE)
}