xgboost/demo/dask/sklearn_cpu_training.py
Jiaming Yuan 7e24a8d245
Improve doc and demo for dask. (#4907)
* Add a readme with link to doc.
* Add more comments in the demonstrations code.
* Workaround https://github.com/dask/distributed/issues/3081 .
2019-09-30 23:59:37 -04:00

40 lines
1.2 KiB
Python

'''Dask interface demo:
Use scikit-learn regressor interface with CPU histogram tree method.'''
from dask.distributed import Client
from dask.distributed import LocalCluster
from dask import array as da
import xgboost
def main(client):
# generate some random data for demonstration
n = 100
m = 10000
partition_size = 100
X = da.random.random((m, n), partition_size)
y = da.random.random(m, partition_size)
regressor = xgboost.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
regressor.set_params(tree_method='hist')
# assigning client here is optional
regressor.client = client
regressor.fit(X, y, eval_set=[(X, y)])
prediction = regressor.predict(X)
bst = regressor.get_booster()
history = regressor.evals_result()
print('Evaluation history:', history)
# returned prediction is always a dask array.
assert isinstance(prediction, da.Array)
return bst # returning the trained model
if __name__ == '__main__':
# or use other clusters for scaling
with LocalCluster(n_workers=4, threads_per_worker=1) as cluster:
with Client(cluster) as client:
main(client)