xgboost/src/linear/updater_gpu_coordinate.cu
Jiaming Yuan 85939c6a6e
Merge duplicated linear updater parameters. (#4013)
* Merge duplicated linear updater parameters.

* Split up coordinate descent parameter.
2018-12-22 13:21:49 +08:00

284 lines
10 KiB
Plaintext

/*!
* Copyright 2018 by Contributors
* \author Rory Mitchell
*/
#include <thrust/execution_policy.h>
#include <thrust/inner_product.h>
#include <xgboost/linear_updater.h>
#include "../common/common.h"
#include "../common/device_helpers.cuh"
#include "../common/timer.h"
#include "./param.h"
#include "coordinate_common.h"
namespace xgboost {
namespace linear {
DMLC_REGISTRY_FILE_TAG(updater_gpu_coordinate);
void RescaleIndices(size_t ridx_begin, dh::DVec<Entry> *data) {
auto d_data = data->Data();
dh::LaunchN(data->DeviceIdx(), data->Size(),
[=] __device__(size_t idx) { d_data[idx].index -= ridx_begin; });
}
class DeviceShard {
int device_id_;
dh::BulkAllocator<dh::MemoryType::kDevice> ba_;
std::vector<size_t> row_ptr_;
dh::DVec<Entry> data_;
dh::DVec<GradientPair> gpair_;
dh::CubMemory temp_;
size_t ridx_begin_;
size_t ridx_end_;
public:
DeviceShard(int device_id, const SparsePage &batch,
bst_uint row_begin, bst_uint row_end,
const LinearTrainParam &param,
const gbm::GBLinearModelParam &model_param)
: device_id_(device_id),
ridx_begin_(row_begin),
ridx_end_(row_end) {
dh::safe_cuda(cudaSetDevice(device_id_));
// The begin and end indices for the section of each column associated with
// this shard
std::vector<std::pair<bst_uint, bst_uint>> column_segments;
row_ptr_ = {0};
for (auto fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
auto cmp = [](Entry e1, Entry e2) {
return e1.index < e2.index;
};
auto column_begin =
std::lower_bound(col.data(), col.data() + col.size(),
Entry(row_begin, 0.0f), cmp);
auto column_end =
std::upper_bound(col.data(), col.data() + col.size(),
Entry(row_end, 0.0f), cmp);
column_segments.push_back(
std::make_pair(column_begin - col.data(), column_end - col.data()));
row_ptr_.push_back(row_ptr_.back() + column_end - column_begin);
}
ba_.Allocate(device_id_, &data_, row_ptr_.back(), &gpair_,
(row_end - row_begin) * model_param.num_output_group);
for (int fidx = 0; fidx < batch.Size(); fidx++) {
auto col = batch[fidx];
auto seg = column_segments[fidx];
dh::safe_cuda(cudaMemcpy(
data_.Data() + row_ptr_[fidx], col.data() + seg.first,
sizeof(Entry) * (seg.second - seg.first), cudaMemcpyHostToDevice));
}
// Rescale indices with respect to current shard
RescaleIndices(ridx_begin_, &data_);
}
void UpdateGpair(const std::vector<GradientPair> &host_gpair,
const gbm::GBLinearModelParam &model_param) {
gpair_.copy(host_gpair.begin() + ridx_begin_ * model_param.num_output_group,
host_gpair.begin() + ridx_end_ * model_param.num_output_group);
}
GradientPair GetBiasGradient(int group_idx, int num_group) {
dh::safe_cuda(cudaSetDevice(device_id_));
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
return idx * num_group + group_idx;
}; // NOLINT
thrust::transform_iterator<decltype(f), decltype(counting), size_t> skip(
counting, f);
auto perm = thrust::make_permutation_iterator(gpair_.tbegin(), skip);
return dh::SumReduction(temp_, perm, ridx_end_ - ridx_begin_);
}
void UpdateBiasResidual(float dbias, int group_idx, int num_groups) {
if (dbias == 0.0f) return;
auto d_gpair = gpair_.Data();
dh::LaunchN(device_id_, ridx_end_ - ridx_begin_, [=] __device__(size_t idx) {
auto &g = d_gpair[idx * num_groups + group_idx];
g += GradientPair(g.GetHess() * dbias, 0);
});
}
GradientPair GetGradient(int group_idx, int num_group, int fidx) {
dh::safe_cuda(cudaSetDevice(device_id_));
auto d_col = data_.Data() + row_ptr_[fidx];
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
auto d_gpair = gpair_.Data();
auto counting = thrust::make_counting_iterator(0ull);
auto f = [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto g = d_gpair[entry.index * num_group + group_idx];
return GradientPair(g.GetGrad() * entry.fvalue,
g.GetHess() * entry.fvalue * entry.fvalue);
}; // NOLINT
thrust::transform_iterator<decltype(f), decltype(counting), GradientPair>
multiply_iterator(counting, f);
return dh::SumReduction(temp_, multiply_iterator, col_size);
}
void UpdateResidual(float dw, int group_idx, int num_groups, int fidx) {
auto d_gpair = gpair_.Data();
auto d_col = data_.Data() + row_ptr_[fidx];
size_t col_size = row_ptr_[fidx + 1] - row_ptr_[fidx];
dh::LaunchN(device_id_, col_size, [=] __device__(size_t idx) {
auto entry = d_col[idx];
auto &g = d_gpair[entry.index * num_groups + group_idx];
g += GradientPair(g.GetHess() * dw * entry.fvalue, 0);
});
}
};
/**
* \class GPUCoordinateUpdater
*
* \brief Coordinate descent algorithm that updates one feature per iteration
*/
class GPUCoordinateUpdater : public LinearUpdater {
public:
// set training parameter
void Init(
const std::vector<std::pair<std::string, std::string>> &args) override {
tparam_.InitAllowUnknown(args);
selector.reset(FeatureSelector::Create(tparam_.feature_selector));
monitor.Init("GPUCoordinateUpdater");
}
void LazyInitShards(DMatrix *p_fmat,
const gbm::GBLinearModelParam &model_param) {
if (!shards.empty()) return;
dist_ = GPUDistribution::Block(GPUSet::All(tparam_.gpu_id, tparam_.n_gpus,
p_fmat->Info().num_row_));
auto devices = dist_.Devices();
size_t n_devices = static_cast<size_t>(devices.Size());
size_t row_begin = 0;
size_t num_row = static_cast<size_t>(p_fmat->Info().num_row_);
// Use fast integer ceiling
// See https://stackoverflow.com/a/2745086
size_t shard_size = (num_row + n_devices - 1) / n_devices;
// Partition input matrix into row segments
std::vector<size_t> row_segments;
row_segments.push_back(0);
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
size_t row_end = std::min(row_begin + shard_size, num_row);
row_segments.push_back(row_end);
row_begin = row_end;
}
CHECK(p_fmat->SingleColBlock());
const auto &batch = *p_fmat->GetColumnBatches().begin();
shards.resize(n_devices);
// Create device shards
dh::ExecuteIndexShards(&shards,
[&](int i, std::unique_ptr<DeviceShard>& shard) {
shard = std::unique_ptr<DeviceShard>(
new DeviceShard(devices.DeviceId(i), batch, row_segments[i],
row_segments[i + 1], tparam_, model_param));
});
}
void Update(HostDeviceVector<GradientPair> *in_gpair, DMatrix *p_fmat,
gbm::GBLinearModel *model, double sum_instance_weight) override {
tparam_.DenormalizePenalties(sum_instance_weight);
monitor.Start("LazyInitShards");
this->LazyInitShards(p_fmat, model->param);
monitor.Stop("LazyInitShards");
monitor.Start("UpdateGpair");
// Update gpair
dh::ExecuteIndexShards(&shards, [&](int idx, std::unique_ptr<DeviceShard>& shard) {
shard->UpdateGpair(in_gpair->ConstHostVector(), model->param);
});
monitor.Stop("UpdateGpair");
monitor.Start("UpdateBias");
this->UpdateBias(p_fmat, model);
monitor.Stop("UpdateBias");
// prepare for updating the weights
selector->Setup(*model, in_gpair->ConstHostVector(), p_fmat,
tparam_.reg_alpha_denorm, tparam_.reg_lambda_denorm,
coord_param_.top_k);
monitor.Start("UpdateFeature");
for (auto group_idx = 0; group_idx < model->param.num_output_group;
++group_idx) {
for (auto i = 0U; i < model->param.num_feature; i++) {
auto fidx = selector->NextFeature(
i, *model, group_idx, in_gpair->ConstHostVector(), p_fmat,
tparam_.reg_alpha_denorm, tparam_.reg_lambda_denorm);
if (fidx < 0) break;
this->UpdateFeature(fidx, group_idx, &in_gpair->HostVector(), model);
}
}
monitor.Stop("UpdateFeature");
}
void UpdateBias(DMatrix *p_fmat, gbm::GBLinearModel *model) {
for (int group_idx = 0; group_idx < model->param.num_output_group;
++group_idx) {
// Get gradient
auto grad = dh::ReduceShards<GradientPair>(
&shards, [&](std::unique_ptr<DeviceShard> &shard) {
return shard->GetBiasGradient(group_idx,
model->param.num_output_group);
});
auto dbias = static_cast<float>(
tparam_.learning_rate *
CoordinateDeltaBias(grad.GetGrad(), grad.GetHess()));
model->bias()[group_idx] += dbias;
// Update residual
dh::ExecuteIndexShards(&shards, [&](int idx, std::unique_ptr<DeviceShard>& shard) {
shard->UpdateBiasResidual(dbias, group_idx,
model->param.num_output_group);
});
}
}
void UpdateFeature(int fidx, int group_idx,
std::vector<GradientPair> *in_gpair,
gbm::GBLinearModel *model) {
bst_float &w = (*model)[fidx][group_idx];
// Get gradient
auto grad = dh::ReduceShards<GradientPair>(
&shards, [&](std::unique_ptr<DeviceShard> &shard) {
return shard->GetGradient(group_idx, model->param.num_output_group,
fidx);
});
auto dw = static_cast<float>(tparam_.learning_rate *
CoordinateDelta(grad.GetGrad(), grad.GetHess(),
w, tparam_.reg_alpha_denorm,
tparam_.reg_lambda_denorm));
w += dw;
dh::ExecuteIndexShards(&shards, [&](int idx, std::unique_ptr<DeviceShard>& shard) {
shard->UpdateResidual(dw, group_idx, model->param.num_output_group, fidx);
});
}
// training parameter
LinearTrainParam tparam_;
CoordinateParam coord_param_;
GPUDistribution dist_;
std::unique_ptr<FeatureSelector> selector;
common::Monitor monitor;
std::vector<std::unique_ptr<DeviceShard>> shards;
};
XGBOOST_REGISTER_LINEAR_UPDATER(GPUCoordinateUpdater, "gpu_coord_descent")
.describe(
"Update linear model according to coordinate descent algorithm. GPU "
"accelerated.")
.set_body([]() { return new GPUCoordinateUpdater(); });
} // namespace linear
} // namespace xgboost