xgboost/src/tree/updater_quantile_hist.h
Jiaming Yuan 83a66b4994
Support categorical data for hist. (#7695)
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
2022-02-25 03:47:14 +08:00

386 lines
15 KiB
C++

/*!
* Copyright 2017-2022 by XGBoost Contributors
* \file updater_quantile_hist.h
* \brief use quantized feature values to construct a tree
* \author Philip Cho, Tianqi Chen, Egor Smirnov
*/
#ifndef XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
#define XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_
#include <dmlc/timer.h>
#include <rabit/rabit.h>
#include <xgboost/tree_updater.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "xgboost/data.h"
#include "xgboost/json.h"
#include "hist/evaluate_splits.h"
#include "hist/histogram.h"
#include "hist/expand_entry.h"
#include "hist/param.h"
#include "constraints.h"
#include "./param.h"
#include "./driver.h"
#include "./split_evaluator.h"
#include "../common/random.h"
#include "../common/timer.h"
#include "../common/hist_util.h"
#include "../common/row_set.h"
#include "../common/partition_builder.h"
#include "../common/column_matrix.h"
namespace xgboost {
struct RandomReplace {
public:
// similar value as for minstd_rand
static constexpr uint64_t kBase = 16807;
static constexpr uint64_t kMod = static_cast<uint64_t>(1) << 63;
using EngineT = std::linear_congruential_engine<uint64_t, kBase, 0, kMod>;
/*
Right-to-left binary method: https://en.wikipedia.org/wiki/Modular_exponentiation
*/
static uint64_t SimpleSkip(uint64_t exponent, uint64_t initial_seed,
uint64_t base, uint64_t mod) {
CHECK_LE(exponent, mod);
uint64_t result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result = (result * base) % mod;
}
base = (base * base) % mod;
exponent = exponent >> 1;
}
// with result we can now find the new seed
return (result * initial_seed) % mod;
}
template<typename Condition, typename ContainerData>
static void MakeIf(Condition condition, const typename ContainerData::value_type replace_value,
const uint64_t initial_seed, const size_t ibegin,
const size_t iend, ContainerData* gpair) {
ContainerData& gpair_ref = *gpair;
const uint64_t displaced_seed = SimpleSkip(ibegin, initial_seed, kBase, kMod);
EngineT eng(displaced_seed);
for (size_t i = ibegin; i < iend; ++i) {
if (condition(i, eng)) {
gpair_ref[i] = replace_value;
}
}
}
};
namespace tree {
class HistRowPartitioner {
// heuristically chosen block size of parallel partitioning
static constexpr size_t kPartitionBlockSize = 2048;
// worker class that partition a block of rows
common::PartitionBuilder<kPartitionBlockSize> partition_builder_;
// storage for row index
common::RowSetCollection row_set_collection_;
/**
* \brief Turn split values into discrete bin indices.
*/
static void FindSplitConditions(const std::vector<CPUExpandEntry>& nodes, const RegTree& tree,
const GHistIndexMatrix& gmat,
std::vector<int32_t>* split_conditions);
/**
* \brief Update the row set for new splits specifed by nodes.
*/
void AddSplitsToRowSet(const std::vector<CPUExpandEntry>& nodes, RegTree const* p_tree);
public:
bst_row_t base_rowid = 0;
public:
HistRowPartitioner(size_t n_samples, size_t base_rowid, int32_t n_threads) {
row_set_collection_.Clear();
const size_t block_size = n_samples / n_threads + !!(n_samples % n_threads);
dmlc::OMPException exc;
std::vector<size_t>& row_indices = *row_set_collection_.Data();
row_indices.resize(n_samples);
size_t* p_row_indices = row_indices.data();
// parallel initialization o f row indices. (std::iota)
#pragma omp parallel num_threads(n_threads)
{
exc.Run([&]() {
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * block_size;
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size), n_samples);
for (size_t i = ibegin; i < iend; ++i) {
p_row_indices[i] = i + base_rowid;
}
});
}
row_set_collection_.Init();
this->base_rowid = base_rowid;
}
template <bool any_missing, bool any_cat>
void UpdatePosition(GenericParameter const* ctx, GHistIndexMatrix const& gmat,
common::ColumnMatrix const& column_matrix,
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
// 1. Find split condition for each split
const size_t n_nodes = nodes.size();
std::vector<int32_t> split_conditions;
FindSplitConditions(nodes, *p_tree, gmat, &split_conditions);
// 2.1 Create a blocked space of size SUM(samples in each node)
common::BlockedSpace2d space(
n_nodes,
[&](size_t node_in_set) {
int32_t nid = nodes[node_in_set].nid;
return row_set_collection_[nid].Size();
},
kPartitionBlockSize);
// 2.2 Initialize the partition builder
// allocate buffers for storage intermediate results by each thread
partition_builder_.Init(space.Size(), n_nodes, [&](size_t node_in_set) {
const int32_t nid = nodes[node_in_set].nid;
const size_t size = row_set_collection_[nid].Size();
const size_t n_tasks = size / kPartitionBlockSize + !!(size % kPartitionBlockSize);
return n_tasks;
});
CHECK_EQ(base_rowid, gmat.base_rowid);
// 2.3 Split elements of row_set_collection_ to left and right child-nodes for each node
// Store results in intermediate buffers from partition_builder_
common::ParallelFor2d(space, ctx->Threads(), [&](size_t node_in_set, common::Range1d r) {
size_t begin = r.begin();
const int32_t nid = nodes[node_in_set].nid;
const size_t task_id = partition_builder_.GetTaskIdx(node_in_set, begin);
partition_builder_.AllocateForTask(task_id);
switch (column_matrix.GetTypeSize()) {
case common::kUint8BinsTypeSize:
partition_builder_.template Partition<uint8_t, any_missing, any_cat>(
node_in_set, nid, r, split_conditions[node_in_set], gmat, column_matrix, *p_tree,
row_set_collection_[nid].begin);
break;
case common::kUint16BinsTypeSize:
partition_builder_.template Partition<uint16_t, any_missing, any_cat>(
node_in_set, nid, r, split_conditions[node_in_set], gmat, column_matrix, *p_tree,
row_set_collection_[nid].begin);
break;
case common::kUint32BinsTypeSize:
partition_builder_.template Partition<uint32_t, any_missing, any_cat>(
node_in_set, nid, r, split_conditions[node_in_set], gmat, column_matrix, *p_tree,
row_set_collection_[nid].begin);
break;
default:
// no default behavior
CHECK(false) << column_matrix.GetTypeSize();
}
});
// 3. Compute offsets to copy blocks of row-indexes
// from partition_builder_ to row_set_collection_
partition_builder_.CalculateRowOffsets();
// 4. Copy elements from partition_builder_ to row_set_collection_ back
// with updated row-indexes for each tree-node
common::ParallelFor2d(space, ctx->Threads(), [&](size_t node_in_set, common::Range1d r) {
const int32_t nid = nodes[node_in_set].nid;
partition_builder_.MergeToArray(node_in_set, r.begin(),
const_cast<size_t*>(row_set_collection_[nid].begin));
});
// 5. Add info about splits into row_set_collection_
AddSplitsToRowSet(nodes, p_tree);
}
auto const& Partitions() const { return row_set_collection_; }
size_t Size() const {
return std::distance(row_set_collection_.begin(), row_set_collection_.end());
}
auto& operator[](bst_node_t nidx) { return row_set_collection_[nidx]; }
auto const& operator[](bst_node_t nidx) const { return row_set_collection_[nidx]; }
};
inline BatchParam HistBatch(TrainParam const& param) {
return {param.max_bin, param.sparse_threshold};
}
/*! \brief construct a tree using quantized feature values */
class QuantileHistMaker: public TreeUpdater {
public:
explicit QuantileHistMaker(ObjInfo task) : task_{task} {
updater_monitor_.Init("QuantileHistMaker");
}
void Configure(const Args& args) override;
void Update(HostDeviceVector<GradientPair>* gpair,
DMatrix* dmat,
const std::vector<RegTree*>& trees) override;
bool UpdatePredictionCache(const DMatrix *data,
linalg::VectorView<float> out_preds) override;
void LoadConfig(Json const& in) override {
auto const& config = get<Object const>(in);
FromJson(config.at("train_param"), &this->param_);
try {
FromJson(config.at("cpu_hist_train_param"), &this->hist_maker_param_);
} catch (std::out_of_range&) {
// XGBoost model is from 1.1.x, so 'cpu_hist_train_param' is missing.
// We add this compatibility check because it's just recently that we (developers) began
// persuade R users away from using saveRDS() for model serialization. Hopefully, one day,
// everyone will be using xgb.save().
LOG(WARNING)
<< "Attempted to load internal configuration for a model file that was generated "
<< "by a previous version of XGBoost. A likely cause for this warning is that the model "
<< "was saved with saveRDS() in R or pickle.dump() in Python. We strongly ADVISE AGAINST "
<< "using saveRDS() or pickle.dump() so that the model remains accessible in current and "
<< "upcoming XGBoost releases. Please use xgb.save() instead to preserve models for the "
<< "long term. For more details and explanation, see "
<< "https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html";
this->hist_maker_param_.UpdateAllowUnknown(Args{});
}
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["train_param"] = ToJson(param_);
out["cpu_hist_train_param"] = ToJson(hist_maker_param_);
}
char const* Name() const override {
return "grow_quantile_histmaker";
}
protected:
CPUHistMakerTrainParam hist_maker_param_;
// training parameter
TrainParam param_;
// column accessor
common::ColumnMatrix column_matrix_;
DMatrix const* p_last_dmat_ {nullptr};
bool is_gmat_initialized_ {false};
// actual builder that runs the algorithm
template<typename GradientSumT>
struct Builder {
public:
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
// constructor
explicit Builder(const size_t n_trees, const TrainParam& param,
std::unique_ptr<TreeUpdater> pruner, DMatrix const* fmat, ObjInfo task,
GenericParameter const* ctx)
: n_trees_(n_trees),
param_(param),
pruner_(std::move(pruner)),
p_last_fmat_(fmat),
histogram_builder_{new HistogramBuilder<GradientSumT, CPUExpandEntry>},
task_{task},
ctx_{ctx} {
builder_monitor_.Init("Quantile::Builder");
}
// update one tree, growing
void Update(const GHistIndexMatrix& gmat, const common::ColumnMatrix& column_matrix,
HostDeviceVector<GradientPair>* gpair, DMatrix* p_fmat, RegTree* p_tree);
bool UpdatePredictionCache(const DMatrix* data,
linalg::VectorView<float> out_preds);
protected:
// initialize temp data structure
void InitData(const GHistIndexMatrix& gmat,
const DMatrix& fmat,
const RegTree& tree,
std::vector<GradientPair>* gpair);
size_t GetNumberOfTrees();
void InitSampling(const DMatrix& fmat, std::vector<GradientPair>* gpair);
template <bool any_missing>
void InitRoot(DMatrix* p_fmat,
RegTree *p_tree,
const std::vector<GradientPair> &gpair_h,
int *num_leaves, std::vector<CPUExpandEntry> *expand);
// Split nodes to 2 sets depending on amount of rows in each node
// Histograms for small nodes will be built explicitly
// Histograms for big nodes will be built by 'Subtraction Trick'
void SplitSiblings(const std::vector<CPUExpandEntry>& nodes,
std::vector<CPUExpandEntry>* nodes_to_evaluate,
RegTree *p_tree);
void AddSplitsToTree(const std::vector<CPUExpandEntry>& expand,
RegTree *p_tree,
int *num_leaves,
std::vector<CPUExpandEntry>* nodes_for_apply_split);
template <bool any_missing>
void ExpandTree(const GHistIndexMatrix& gmat,
const common::ColumnMatrix& column_matrix,
DMatrix* p_fmat,
RegTree* p_tree,
const std::vector<GradientPair>& gpair_h);
// --data fields--
const size_t n_trees_;
const TrainParam& param_;
std::shared_ptr<common::ColumnSampler> column_sampler_{
std::make_shared<common::ColumnSampler>()};
std::vector<GradientPair> gpair_local_;
/*! \brief feature with least # of bins. to be used for dense specialization
of InitNewNode() */
uint32_t fid_least_bins_;
std::unique_ptr<TreeUpdater> pruner_;
std::unique_ptr<HistEvaluator<GradientSumT, CPUExpandEntry>> evaluator_;
// Right now there's only 1 partitioner in this vector, when external memory is fully
// supported we will have number of partitioners equal to number of pages.
std::vector<HistRowPartitioner> partitioner_;
// back pointers to tree and data matrix
const RegTree* p_last_tree_{nullptr};
DMatrix const* const p_last_fmat_;
DMatrix* p_last_fmat_mutable_;
// key is the node id which should be calculated by Subtraction Trick, value is the node which
// provides the evidence for subtraction
std::vector<CPUExpandEntry> nodes_for_subtraction_trick_;
// list of nodes whose histograms would be built explicitly.
std::vector<CPUExpandEntry> nodes_for_explicit_hist_build_;
enum class DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData };
DataLayout data_layout_;
std::unique_ptr<HistogramBuilder<GradientSumT, CPUExpandEntry>> histogram_builder_;
ObjInfo task_;
// Context for number of threads
GenericParameter const* ctx_;
common::Monitor builder_monitor_;
};
common::Monitor updater_monitor_;
template<typename GradientSumT>
void SetBuilder(const size_t n_trees, std::unique_ptr<Builder<GradientSumT>>*, DMatrix *dmat);
template<typename GradientSumT>
void CallBuilderUpdate(const std::unique_ptr<Builder<GradientSumT>>& builder,
HostDeviceVector<GradientPair> *gpair,
DMatrix *dmat,
GHistIndexMatrix const& gmat,
const std::vector<RegTree *> &trees);
protected:
std::unique_ptr<Builder<float>> float_builder_;
std::unique_ptr<Builder<double>> double_builder_;
std::unique_ptr<TreeUpdater> pruner_;
ObjInfo task_;
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_UPDATER_QUANTILE_HIST_H_