xgboost/tests/cpp/plugin/test_sycl_hist_updater.cc
Dmitry Razdoburdin 58513dc288
[SYCL] Add sampling initialization (#10216)
---------

Co-authored-by: Dmitry Razdoburdin <>
2024-04-25 04:35:52 +08:00

105 lines
3.6 KiB
C++

/**
* Copyright 2020-2024 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <oneapi/dpl/random>
#include "../../../plugin/sycl/tree/hist_updater.h"
#include "../../../plugin/sycl/device_manager.h"
#include "../helpers.h"
namespace xgboost::sycl::tree {
template <typename GradientSumT>
class TestHistUpdater : public HistUpdater<GradientSumT> {
public:
TestHistUpdater(::sycl::queue qu,
const xgboost::tree::TrainParam& param,
std::unique_ptr<TreeUpdater> pruner,
FeatureInteractionConstraintHost int_constraints_,
DMatrix const* fmat) : HistUpdater<GradientSumT>(qu, param, std::move(pruner),
int_constraints_, fmat) {}
void TestInitSampling(const USMVector<GradientPair, MemoryType::on_device> &gpair,
USMVector<size_t, MemoryType::on_device>* row_indices) {
HistUpdater<GradientSumT>::InitSampling(gpair, row_indices);
}
};
template <typename GradientSumT>
void TestHistUpdaterSampling(const xgboost::tree::TrainParam& param) {
const size_t num_rows = 1u << 12;
const size_t num_columns = 1;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
ObjInfo task{ObjInfo::kRegression};
auto p_fmat = RandomDataGenerator{num_rows, num_columns, 0.0}.GenerateDMatrix();
FeatureInteractionConstraintHost int_constraints;
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(qu, param, std::move(pruner), int_constraints, p_fmat.get());
USMVector<size_t, MemoryType::on_device> row_indices_0(&qu, num_rows);
USMVector<size_t, MemoryType::on_device> row_indices_1(&qu, num_rows);
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, num_rows);
auto* gpair_ptr = gpair.Data();
qu.submit([&](::sycl::handler& cgh) {
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(num_rows)),
[=](::sycl::item<1> pid) {
uint64_t i = pid.get_linear_id();
constexpr uint32_t seed = 777;
oneapi::dpl::minstd_rand engine(seed, i);
oneapi::dpl::uniform_real_distribution<GradientPair::ValueT> distr(-1., 1.);
gpair_ptr[i] = {distr(engine), distr(engine)};
});
}).wait();
updater.TestInitSampling(gpair, &row_indices_0);
size_t n_samples = row_indices_0.Size();
// Half of gpairs have neg hess
ASSERT_LT(n_samples, num_rows * 0.5 * param.subsample * 1.2);
ASSERT_GT(n_samples, num_rows * 0.5 * param.subsample / 1.2);
// Check if two lanunches generate different realisations:
updater.TestInitSampling(gpair, &row_indices_1);
if (row_indices_1.Size() == n_samples) {
std::vector<size_t> row_indices_0_host(n_samples);
std::vector<size_t> row_indices_1_host(n_samples);
qu.memcpy(row_indices_0_host.data(), row_indices_0.Data(), n_samples * sizeof(size_t)).wait();
qu.memcpy(row_indices_1_host.data(), row_indices_1.Data(), n_samples * sizeof(size_t)).wait();
// The order in row_indices_0 and row_indices_1 can be different
std::set<size_t> rows;
for (auto row : row_indices_0_host) {
rows.insert(row);
}
size_t num_diffs = 0;
for (auto row : row_indices_1_host) {
if (rows.count(row) == 0) num_diffs++;
}
ASSERT_NE(num_diffs, 0);
}
}
TEST(SyclHistUpdater, Sampling) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"subsample", "0.7"}});
TestHistUpdaterSampling<float>(param);
TestHistUpdaterSampling<double>(param);
}
} // namespace xgboost::sycl::tree