xgboost/src/gbm/gblinear.cc

367 lines
13 KiB
C++

/**
* Copyright 2014-2023, XGBoost Contributors
* \file gblinear.cc
* \brief Implementation of Linear booster, with L1/L2 regularization: Elastic Net
* the update rule is parallel coordinate descent (shotgun)
* \author Tianqi Chen
*/
#include <dmlc/omp.h>
#include <dmlc/parameter.h>
#include <vector>
#include <string>
#include <sstream>
#include <algorithm>
#include <numeric>
#include "xgboost/gbm.h"
#include "xgboost/json.h"
#include "xgboost/predictor.h"
#include "xgboost/linear_updater.h"
#include "xgboost/logging.h"
#include "xgboost/learner.h"
#include "xgboost/linalg.h"
#include "gblinear_model.h"
#include "../common/timer.h"
#include "../common/common.h"
#include "../common/threading_utils.h"
#include "../common/error_msg.h"
namespace xgboost::gbm {
DMLC_REGISTRY_FILE_TAG(gblinear);
// training parameters
struct GBLinearTrainParam : public XGBoostParameter<GBLinearTrainParam> {
std::string updater;
float tolerance;
size_t max_row_perbatch;
void CheckGPUSupport() {
auto n_gpus = common::AllVisibleGPUs();
if (n_gpus == 0 && this->updater == "gpu_coord_descent") {
common::AssertGPUSupport();
this->UpdateAllowUnknown(Args{{"updater", "coord_descent"}});
LOG(WARNING) << "Loading configuration on a CPU only machine. Changing "
"updater to `coord_descent`.";
}
}
DMLC_DECLARE_PARAMETER(GBLinearTrainParam) {
DMLC_DECLARE_FIELD(updater)
.set_default("shotgun")
.describe("Update algorithm for linear model. One of shotgun/coord_descent");
DMLC_DECLARE_FIELD(tolerance)
.set_lower_bound(0.0f)
.set_default(0.0f)
.describe("Stop if largest weight update is smaller than this number.");
DMLC_DECLARE_FIELD(max_row_perbatch)
.set_default(std::numeric_limits<size_t>::max())
.describe("Maximum rows per batch.");
}
};
void LinearCheckLayer(unsigned layer_begin) {
CHECK_EQ(layer_begin, 0) << "Linear booster does not support prediction range.";
}
/*!
* \brief gradient boosted linear model
*/
class GBLinear : public GradientBooster {
public:
explicit GBLinear(LearnerModelParam const* learner_model_param, Context const* ctx)
: GradientBooster{ctx},
learner_model_param_{learner_model_param},
model_{learner_model_param},
previous_model_{learner_model_param} {}
void Configure(const Args& cfg) override {
if (model_.weight.size() == 0) {
model_.Configure(cfg);
}
param_.UpdateAllowUnknown(cfg);
param_.CheckGPUSupport();
if (param_.updater == "gpu_coord_descent") {
LOG(WARNING) << error::DeprecatedFunc("gpu_coord_descent", "2.0.0",
R"(device="cuda", updater="coord_descent")");
}
if (param_.updater == "coord_descent" && ctx_->IsCUDA()) {
updater_.reset(LinearUpdater::Create("gpu_coord_descent", ctx_));
} else {
updater_.reset(LinearUpdater::Create(param_.updater, ctx_));
}
updater_->Configure(cfg);
monitor_.Init("GBLinear");
}
int32_t BoostedRounds() const override {
return model_.num_boosted_rounds;
}
bool ModelFitted() const override { return BoostedRounds() != 0; }
void Load(dmlc::Stream* fi) override {
model_.Load(fi);
}
void Save(dmlc::Stream* fo) const override {
model_.Save(fo);
}
void SaveModel(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String{"gblinear"};
out["model"] = Object();
auto& model = out["model"];
model_.SaveModel(&model);
}
void LoadModel(Json const& in) override {
CHECK_EQ(get<String>(in["name"]), "gblinear");
auto const& model = in["model"];
model_.LoadModel(model);
}
void LoadConfig(Json const& in) override {
CHECK_EQ(get<String>(in["name"]), "gblinear");
FromJson(in["gblinear_train_param"], &param_);
param_.CheckGPUSupport();
updater_.reset(LinearUpdater::Create(param_.updater, ctx_));
this->updater_->LoadConfig(in["updater"]);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String{"gblinear"};
out["gblinear_train_param"] = ToJson(param_);
out["updater"] = Object();
auto& j_updater = out["updater"];
CHECK(this->updater_);
this->updater_->SaveConfig(&j_updater);
}
void DoBoost(DMatrix* p_fmat, HostDeviceVector<GradientPair>* in_gpair, PredictionCacheEntry*,
ObjFunction const*) override {
monitor_.Start("DoBoost");
model_.LazyInitModel();
this->LazySumWeights(p_fmat);
if (!this->CheckConvergence()) {
updater_->Update(in_gpair, p_fmat, &model_, sum_instance_weight_);
}
model_.num_boosted_rounds++;
monitor_.Stop("DoBoost");
}
void PredictBatch(DMatrix* p_fmat, PredictionCacheEntry* predts, bool /*training*/,
bst_layer_t layer_begin, bst_layer_t) override {
monitor_.Start("PredictBatch");
LinearCheckLayer(layer_begin);
auto* out_preds = &predts->predictions;
this->PredictBatchInternal(p_fmat, &out_preds->HostVector());
monitor_.Stop("PredictBatch");
}
// add base margin
void PredictInstance(const SparsePage::Inst& inst, std::vector<bst_float>* out_preds,
uint32_t layer_begin, uint32_t) override {
LinearCheckLayer(layer_begin);
const int ngroup = model_.learner_model_param->num_output_group;
auto base_score = learner_model_param_->BaseScore(ctx_);
for (int gid = 0; gid < ngroup; ++gid) {
this->Pred(inst, dmlc::BeginPtr(*out_preds), gid, base_score(0));
}
}
void PredictLeaf(DMatrix *, HostDeviceVector<bst_float> *, unsigned, unsigned) override {
LOG(FATAL) << "gblinear does not support prediction of leaf index";
}
void PredictContribution(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_contribs,
bst_layer_t layer_begin, bst_layer_t /*layer_end*/, bool) override {
model_.LazyInitModel();
LinearCheckLayer(layer_begin);
auto base_margin = p_fmat->Info().base_margin_.View(Context::kCpuId);
const int ngroup = model_.learner_model_param->num_output_group;
const size_t ncolumns = model_.learner_model_param->num_feature + 1;
// allocate space for (#features + bias) times #groups times #rows
std::vector<bst_float>& contribs = out_contribs->HostVector();
contribs.resize(p_fmat->Info().num_row_ * ncolumns * ngroup);
// make sure contributions is zeroed, we could be reusing a previously allocated one
std::fill(contribs.begin(), contribs.end(), 0);
auto base_score = learner_model_param_->BaseScore(ctx_);
// start collecting the contributions
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
auto page = batch.GetView();
common::ParallelFor(nsize, ctx_->Threads(), [&](bst_omp_uint i) {
auto inst = page[i];
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
// calculate linear terms' contributions
for (auto& ins : inst) {
if (ins.index >= model_.learner_model_param->num_feature) continue;
p_contribs[ins.index] = ins.fvalue * model_[ins.index][gid];
}
// add base margin to BIAS
p_contribs[ncolumns - 1] =
model_.Bias()[gid] +
((base_margin.Size() != 0) ? base_margin(row_idx, gid) : base_score(0));
}
});
}
}
void PredictInteractionContributions(DMatrix* p_fmat, HostDeviceVector<float>* out_contribs,
bst_layer_t layer_begin, bst_layer_t /*layer_end*/,
bool) override {
LinearCheckLayer(layer_begin);
std::vector<bst_float>& contribs = out_contribs->HostVector();
// linear models have no interaction effects
const size_t nelements = model_.learner_model_param->num_feature *
model_.learner_model_param->num_feature;
contribs.resize(p_fmat->Info().num_row_ * nelements *
model_.learner_model_param->num_output_group);
std::fill(contribs.begin(), contribs.end(), 0);
}
std::vector<std::string> DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) const override {
return model_.DumpModel(fmap, with_stats, format);
}
void FeatureScore(std::string const &importance_type,
common::Span<int32_t const> trees,
std::vector<bst_feature_t> *out_features,
std::vector<float> *out_scores) const override {
CHECK(!model_.weight.empty()) << "Model is not initialized";
CHECK(trees.empty()) << "gblinear doesn't support number of trees for feature importance.";
CHECK_EQ(importance_type, "weight")
<< "gblinear only has `weight` defined for feature importance.";
out_features->resize(this->learner_model_param_->num_feature, 0);
std::iota(out_features->begin(), out_features->end(), 0);
// Don't include the bias term in the feature importance scores
// The bias is the last weight
out_scores->resize(model_.weight.size() - learner_model_param_->num_output_group, 0);
auto n_groups = learner_model_param_->num_output_group;
linalg::TensorView<float, 2> scores{
*out_scores,
{learner_model_param_->num_feature, n_groups},
Context::kCpuId};
for (size_t i = 0; i < learner_model_param_->num_feature; ++i) {
for (bst_group_t g = 0; g < n_groups; ++g) {
scores(i, g) = model_[i][g];
}
}
}
bool UseGPU() const override {
if (param_.updater == "gpu_coord_descent") {
return true;
} else {
return false;
}
}
protected:
void PredictBatchInternal(DMatrix *p_fmat,
std::vector<bst_float> *out_preds) {
monitor_.Start("PredictBatchInternal");
model_.LazyInitModel();
std::vector<bst_float> &preds = *out_preds;
auto base_margin = p_fmat->Info().base_margin_.View(Context::kCpuId);
// start collecting the prediction
const int ngroup = model_.learner_model_param->num_output_group;
preds.resize(p_fmat->Info().num_row_ * ngroup);
auto base_score = learner_model_param_->BaseScore(Context::kCpuId);
for (const auto &page : p_fmat->GetBatches<SparsePage>()) {
auto const& batch = page.GetView();
// output convention: nrow * k, where nrow is number of rows
// k is number of group
// parallel over local batch
const auto nsize = static_cast<omp_ulong>(batch.Size());
if (base_margin.Size() != 0) {
CHECK_EQ(base_margin.Size(), nsize * ngroup);
}
common::ParallelFor(nsize, ctx_->Threads(), [&](omp_ulong i) {
const size_t ridx = page.base_rowid + i;
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {
float margin = (base_margin.Size() != 0) ? base_margin(ridx, gid) : base_score(0);
this->Pred(batch[i], &preds[ridx * ngroup], gid, margin);
}
});
}
monitor_.Stop("PredictBatchInternal");
}
bool CheckConvergence() {
if (param_.tolerance == 0.0f) return false;
if (is_converged_) return true;
if (previous_model_.weight.size() != model_.weight.size()) {
previous_model_ = model_;
return false;
}
float largest_dw = 0.0;
for (size_t i = 0; i < model_.weight.size(); i++) {
largest_dw = std::max(
largest_dw, std::abs(model_.weight[i] - previous_model_.weight[i]));
}
previous_model_ = model_;
is_converged_ = largest_dw <= param_.tolerance;
return is_converged_;
}
void LazySumWeights(DMatrix *p_fmat) {
if (!sum_weight_complete_) {
auto &info = p_fmat->Info();
for (size_t i = 0; i < info.num_row_; i++) {
sum_instance_weight_ += info.GetWeight(i);
}
sum_weight_complete_ = true;
}
}
void Pred(const SparsePage::Inst &inst, bst_float *preds, int gid,
bst_float base) {
bst_float psum = model_.Bias()[gid] + base;
for (const auto& ins : inst) {
if (ins.index >= model_.learner_model_param->num_feature) continue;
psum += ins.fvalue * model_[ins.index][gid];
}
preds[gid] = psum;
}
// biase margin score
LearnerModelParam const* learner_model_param_;
// model field
GBLinearModel model_;
GBLinearModel previous_model_;
GBLinearTrainParam param_;
std::unique_ptr<LinearUpdater> updater_;
double sum_instance_weight_{};
bool sum_weight_complete_{false};
common::Monitor monitor_;
bool is_converged_{false};
};
// register the objective functions
DMLC_REGISTER_PARAMETER(GBLinearTrainParam);
XGBOOST_REGISTER_GBM(GBLinear, "gblinear")
.describe("Linear booster, implement generalized linear model.")
.set_body([](LearnerModelParam const* booster_config, Context const* ctx) {
return new GBLinear(booster_config, ctx);
});
} // namespace xgboost::gbm