xgboost/tests/cpp/test_learner.cc
Jiaming Yuan 7b9043cf71
Fix clang-tidy warnings. (#4149)
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.

* Reformat.
2019-03-13 02:25:51 +08:00

119 lines
4.2 KiB
C++

// Copyright by Contributors
#include <gtest/gtest.h>
#include <vector>
#include "helpers.h"
#include "xgboost/learner.h"
#include "dmlc/filesystem.h"
namespace xgboost {
TEST(Learner, Basic) {
using Arg = std::pair<std::string, std::string>;
auto args = {Arg("tree_method", "exact")};
auto mat_ptr = CreateDMatrix(10, 10, 0);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {*mat_ptr};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->Configure(args);
delete mat_ptr;
}
TEST(Learner, SelectTreeMethod) {
using Arg = std::pair<std::string, std::string>;
auto mat_ptr = CreateDMatrix(10, 10, 0);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {*mat_ptr};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
// Test if `tree_method` can be set
learner->Configure({Arg("tree_method", "approx")});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_histmaker,prune");
learner->Configure({Arg("tree_method", "exact")});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_colmaker,prune");
learner->Configure({Arg("tree_method", "hist")});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_quantile_histmaker");
learner->Configure({Arg{"booster", "dart"}, Arg{"tree_method", "hist"}});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_quantile_histmaker");
#ifdef XGBOOST_USE_CUDA
learner->Configure({Arg("tree_method", "gpu_exact")});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_gpu,prune");
learner->Configure({Arg("tree_method", "gpu_hist")});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_gpu_hist");
learner->Configure({Arg{"booster", "dart"}, Arg{"tree_method", "gpu_hist"}});
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_gpu_hist");
#endif
delete mat_ptr;
}
TEST(Learner, CheckGroup) {
using Arg = std::pair<std::string, std::string>;
size_t constexpr kNumGroups = 4;
size_t constexpr kNumRows = 17;
size_t constexpr kNumCols = 15;
auto pp_mat = CreateDMatrix(kNumRows, kNumCols, 0);
auto& p_mat = *pp_mat;
std::vector<bst_float> weight(kNumGroups);
std::vector<bst_int> group(kNumGroups);
group[0] = 2;
group[1] = 3;
group[2] = 7;
group[3] = 5;
std::vector<bst_float> labels (kNumRows);
for (size_t i = 0; i < kNumRows; ++i) {
labels[i] = i % 2;
}
p_mat->Info().SetInfo(
"weight", static_cast<void*>(weight.data()), DataType::kFloat32, kNumGroups);
p_mat->Info().SetInfo(
"group", group.data(), DataType::kUInt32, kNumGroups);
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kNumRows);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {p_mat};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->Configure({Arg{"objective", "rank:pairwise"}});
learner->InitModel();
EXPECT_NO_THROW(learner->UpdateOneIter(0, p_mat.get()));
group.resize(kNumGroups+1);
group[3] = 4;
group[4] = 1;
p_mat->Info().SetInfo("group", group.data(), DataType::kUInt32, kNumGroups+1);
EXPECT_ANY_THROW(learner->UpdateOneIter(0, p_mat.get()));
delete pp_mat;
}
TEST(Learner, SLOW_CheckMultiBatch) {
using Arg = std::pair<std::string, std::string>;
// Create sufficiently large data to make two row pages
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/big.libsvm";
CreateBigTestData(tmp_file, 5000000);
std::shared_ptr<DMatrix> dmat(xgboost::DMatrix::Load( tmp_file + "#" + tmp_file + ".cache", true, false));
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
EXPECT_FALSE(dmat->SingleColBlock());
size_t num_row = dmat->Info().num_row_;
std::vector<bst_float> labels(num_row);
for (size_t i = 0; i < num_row; ++i) {
labels[i] = i % 2;
}
dmat->Info().SetInfo("label", labels.data(), DataType::kFloat32, num_row);
std::vector<std::shared_ptr<DMatrix>> mat{dmat};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->Configure({Arg{"objective", "binary:logistic"}});
learner->InitModel();
learner->UpdateOneIter(0, dmat.get());
}
} // namespace xgboost