* add a test for cpu predictor using external memory * allow different page size for testing
126 lines
4.1 KiB
C++
126 lines
4.1 KiB
C++
// Copyright by Contributors
|
|
#include <dmlc/filesystem.h>
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/predictor.h>
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost {
|
|
TEST(cpu_predictor, Test) {
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
|
|
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
|
|
(*trees.back())[0].SetLeaf(1.5f);
|
|
(*trees.back()).Stat(0).sum_hess = 1.0f;
|
|
gbm::GBTreeModel model(0.5);
|
|
model.CommitModel(std::move(trees), 0);
|
|
model.param.num_output_group = 1;
|
|
model.base_margin = 0;
|
|
|
|
int n_row = 5;
|
|
int n_col = 5;
|
|
|
|
auto dmat = CreateDMatrix(n_row, n_col, 0);
|
|
|
|
// Test predict batch
|
|
HostDeviceVector<float> out_predictions;
|
|
cpu_predictor->PredictBatch((*dmat).get(), &out_predictions, model, 0);
|
|
std::vector<float>& out_predictions_h = out_predictions.HostVector();
|
|
for (int i = 0; i < out_predictions.Size(); i++) {
|
|
ASSERT_EQ(out_predictions_h[i], 1.5);
|
|
}
|
|
|
|
// Test predict instance
|
|
auto &batch = *(*dmat)->GetRowBatches().begin();
|
|
for (int i = 0; i < batch.Size(); i++) {
|
|
std::vector<float> instance_out_predictions;
|
|
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
|
|
ASSERT_EQ(instance_out_predictions[0], 1.5);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf((*dmat).get(), &leaf_out_predictions, model);
|
|
for (auto v : leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> out_contribution;
|
|
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model);
|
|
for (auto const& contri : out_contribution) {
|
|
ASSERT_EQ(contri, 1.5);
|
|
}
|
|
// Test predict contribution (approximate method)
|
|
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model, true);
|
|
for (auto const& contri : out_contribution) {
|
|
ASSERT_EQ(contri, 1.5);
|
|
}
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
TEST(cpu_predictor, ExternalMemoryTest) {
|
|
// Create sufficiently large data to make two row pages
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/big.libsvm";
|
|
CreateBigTestData(tmp_file, 12);
|
|
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(
|
|
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", 64UL);
|
|
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
|
|
int64_t batche_count = 0;
|
|
for (const auto &batch : dmat->GetRowBatches()) {
|
|
batche_count++;
|
|
}
|
|
EXPECT_EQ(batche_count, 2);
|
|
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
|
|
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
|
|
(*trees.back())[0].SetLeaf(1.5f);
|
|
(*trees.back()).Stat(0).sum_hess = 1.0f;
|
|
gbm::GBTreeModel model(0.5);
|
|
model.CommitModel(std::move(trees), 0);
|
|
model.param.num_output_group = 1;
|
|
model.base_margin = 0;
|
|
|
|
// Test predict batch
|
|
HostDeviceVector<float> out_predictions;
|
|
cpu_predictor->PredictBatch(dmat, &out_predictions, model, 0);
|
|
std::vector<float> &out_predictions_h = out_predictions.HostVector();
|
|
EXPECT_EQ(out_predictions.Size(), dmat->Info().num_row_);
|
|
for (const auto& v : out_predictions_h) {
|
|
ASSERT_EQ(v, 1.5);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf(dmat, &leaf_out_predictions, model);
|
|
EXPECT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
|
|
for (const auto& v : leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> out_contribution;
|
|
cpu_predictor->PredictContribution(dmat, &out_contribution, model);
|
|
EXPECT_EQ(out_contribution.size(), dmat->Info().num_row_);
|
|
for (const auto& v : out_contribution) {
|
|
ASSERT_EQ(v, 1.5);
|
|
}
|
|
|
|
// Test predict contribution (approximate method)
|
|
std::vector<float> out_contribution_approximate;
|
|
cpu_predictor->PredictContribution(dmat, &out_contribution_approximate, model, true);
|
|
EXPECT_EQ(out_contribution_approximate.size(), dmat->Info().num_row_);
|
|
for (const auto& v : out_contribution_approximate) {
|
|
ASSERT_EQ(v, 1.5);
|
|
}
|
|
|
|
delete dmat;
|
|
}
|
|
} // namespace xgboost
|