xgboost/tests/cpp/predictor/test_cpu_predictor.cc
Rong Ou 81c1cd40ca add a test for cpu predictor using external memory (#4308)
* add a test for cpu predictor using external memory

* allow different page size for testing
2019-04-10 13:25:10 +12:00

126 lines
4.1 KiB
C++

// Copyright by Contributors
#include <dmlc/filesystem.h>
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../helpers.h"
namespace xgboost {
TEST(cpu_predictor, Test) {
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
(*trees.back())[0].SetLeaf(1.5f);
(*trees.back()).Stat(0).sum_hess = 1.0f;
gbm::GBTreeModel model(0.5);
model.CommitModel(std::move(trees), 0);
model.param.num_output_group = 1;
model.base_margin = 0;
int n_row = 5;
int n_col = 5;
auto dmat = CreateDMatrix(n_row, n_col, 0);
// Test predict batch
HostDeviceVector<float> out_predictions;
cpu_predictor->PredictBatch((*dmat).get(), &out_predictions, model, 0);
std::vector<float>& out_predictions_h = out_predictions.HostVector();
for (int i = 0; i < out_predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto &batch = *(*dmat)->GetRowBatches().begin();
for (int i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf((*dmat).get(), &leaf_out_predictions, model);
for (auto v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model);
for (auto const& contri : out_contribution) {
ASSERT_EQ(contri, 1.5);
}
// Test predict contribution (approximate method)
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model, true);
for (auto const& contri : out_contribution) {
ASSERT_EQ(contri, 1.5);
}
delete dmat;
}
TEST(cpu_predictor, ExternalMemoryTest) {
// Create sufficiently large data to make two row pages
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/big.libsvm";
CreateBigTestData(tmp_file, 12);
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", 64UL);
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
int64_t batche_count = 0;
for (const auto &batch : dmat->GetRowBatches()) {
batche_count++;
}
EXPECT_EQ(batche_count, 2);
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
(*trees.back())[0].SetLeaf(1.5f);
(*trees.back()).Stat(0).sum_hess = 1.0f;
gbm::GBTreeModel model(0.5);
model.CommitModel(std::move(trees), 0);
model.param.num_output_group = 1;
model.base_margin = 0;
// Test predict batch
HostDeviceVector<float> out_predictions;
cpu_predictor->PredictBatch(dmat, &out_predictions, model, 0);
std::vector<float> &out_predictions_h = out_predictions.HostVector();
EXPECT_EQ(out_predictions.Size(), dmat->Info().num_row_);
for (const auto& v : out_predictions_h) {
ASSERT_EQ(v, 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat, &leaf_out_predictions, model);
EXPECT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
for (const auto& v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution(dmat, &out_contribution, model);
EXPECT_EQ(out_contribution.size(), dmat->Info().num_row_);
for (const auto& v : out_contribution) {
ASSERT_EQ(v, 1.5);
}
// Test predict contribution (approximate method)
std::vector<float> out_contribution_approximate;
cpu_predictor->PredictContribution(dmat, &out_contribution_approximate, model, true);
EXPECT_EQ(out_contribution_approximate.size(), dmat->Info().num_row_);
for (const auto& v : out_contribution_approximate) {
ASSERT_EQ(v, 1.5);
}
delete dmat;
}
} // namespace xgboost