xgboost/tests/cpp/tree/gpu_hist/test_histogram.cu
Jiaming Yuan d7d1b6e3a6
CPU evaluation for cat data. (#7393)
* Implementation for one hot based.
* Implementation for partition based. (LightGBM)
2021-11-06 14:41:35 +08:00

163 lines
6.5 KiB
Plaintext

#include <gtest/gtest.h>
#include <vector>
#include "../../../../src/common/categorical.h"
#include "../../../../src/tree/gpu_hist/histogram.cuh"
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
#include "../../categorical_helpers.h"
#include "../../helpers.h"
namespace xgboost {
namespace tree {
template <typename Gradient>
void TestDeterministicHistogram(bool is_dense, int shm_size) {
size_t constexpr kBins = 256, kCols = 120, kRows = 16384, kRounds = 16;
float constexpr kLower = -1e-2, kUpper = 1e2;
float sparsity = is_dense ? 0.0f : 0.5f;
auto matrix = RandomDataGenerator(kRows, kCols, sparsity).GenerateDMatrix();
BatchParam batch_param{0, static_cast<int32_t>(kBins)};
for (auto const& batch : matrix->GetBatches<EllpackPage>(batch_param)) {
auto* page = batch.Impl();
tree::RowPartitioner row_partitioner(0, kRows);
auto ridx = row_partitioner.GetRows(0);
int num_bins = kBins * kCols;
dh::device_vector<Gradient> histogram(num_bins);
auto d_histogram = dh::ToSpan(histogram);
auto gpair = GenerateRandomGradients(kRows, kLower, kUpper);
gpair.SetDevice(0);
FeatureGroups feature_groups(page->Cuts(), page->is_dense, shm_size,
sizeof(Gradient));
auto rounding = CreateRoundingFactor<Gradient>(gpair.DeviceSpan());
BuildGradientHistogram(page->GetDeviceAccessor(0),
feature_groups.DeviceAccessor(0), gpair.DeviceSpan(),
ridx, d_histogram, rounding);
std::vector<Gradient> histogram_h(num_bins);
dh::safe_cuda(cudaMemcpy(histogram_h.data(), d_histogram.data(),
num_bins * sizeof(Gradient),
cudaMemcpyDeviceToHost));
for (size_t i = 0; i < kRounds; ++i) {
dh::device_vector<Gradient> new_histogram(num_bins);
auto d_new_histogram = dh::ToSpan(new_histogram);
auto rounding = CreateRoundingFactor<Gradient>(gpair.DeviceSpan());
BuildGradientHistogram(page->GetDeviceAccessor(0),
feature_groups.DeviceAccessor(0),
gpair.DeviceSpan(), ridx, d_new_histogram,
rounding);
std::vector<Gradient> new_histogram_h(num_bins);
dh::safe_cuda(cudaMemcpy(new_histogram_h.data(), d_new_histogram.data(),
num_bins * sizeof(Gradient),
cudaMemcpyDeviceToHost));
for (size_t j = 0; j < new_histogram_h.size(); ++j) {
ASSERT_EQ(new_histogram_h[j].GetGrad(), histogram_h[j].GetGrad());
ASSERT_EQ(new_histogram_h[j].GetHess(), histogram_h[j].GetHess());
}
}
{
auto gpair = GenerateRandomGradients(kRows, kLower, kUpper);
gpair.SetDevice(0);
// Use a single feature group to compute the baseline.
FeatureGroups single_group(page->Cuts());
dh::device_vector<Gradient> baseline(num_bins);
BuildGradientHistogram(page->GetDeviceAccessor(0),
single_group.DeviceAccessor(0),
gpair.DeviceSpan(), ridx, dh::ToSpan(baseline),
rounding);
std::vector<Gradient> baseline_h(num_bins);
dh::safe_cuda(cudaMemcpy(baseline_h.data(), baseline.data().get(),
num_bins * sizeof(Gradient),
cudaMemcpyDeviceToHost));
for (size_t i = 0; i < baseline.size(); ++i) {
EXPECT_NEAR(baseline_h[i].GetGrad(), histogram_h[i].GetGrad(),
baseline_h[i].GetGrad() * 1e-3);
}
}
}
}
TEST(Histogram, GPUDeterministic) {
std::vector<bool> is_dense_array{false, true};
std::vector<int> shm_sizes{48 * 1024, 64 * 1024, 160 * 1024};
for (bool is_dense : is_dense_array) {
for (int shm_size : shm_sizes) {
TestDeterministicHistogram<GradientPair>(is_dense, shm_size);
TestDeterministicHistogram<GradientPairPrecise>(is_dense, shm_size);
}
}
}
// Test 1 vs rest categorical histogram is equivalent to one hot encoded data.
void TestGPUHistogramCategorical(size_t num_categories) {
size_t constexpr kRows = 340;
size_t constexpr kBins = 256;
auto x = GenerateRandomCategoricalSingleColumn(kRows, num_categories);
auto cat_m = GetDMatrixFromData(x, kRows, 1);
cat_m->Info().feature_types.HostVector().push_back(FeatureType::kCategorical);
BatchParam batch_param{0, static_cast<int32_t>(kBins)};
tree::RowPartitioner row_partitioner(0, kRows);
auto ridx = row_partitioner.GetRows(0);
dh::device_vector<GradientPairPrecise> cat_hist(num_categories);
auto gpair = GenerateRandomGradients(kRows, 0, 2);
gpair.SetDevice(0);
auto rounding = CreateRoundingFactor<GradientPairPrecise>(gpair.DeviceSpan());
/**
* Generate hist with cat data.
*/
for (auto const &batch : cat_m->GetBatches<EllpackPage>(batch_param)) {
auto* page = batch.Impl();
FeatureGroups single_group(page->Cuts());
BuildGradientHistogram(page->GetDeviceAccessor(0),
single_group.DeviceAccessor(0),
gpair.DeviceSpan(), ridx, dh::ToSpan(cat_hist),
rounding);
}
/**
* Generate hist with one hot encoded data.
*/
auto x_encoded = OneHotEncodeFeature(x, num_categories);
auto encode_m = GetDMatrixFromData(x_encoded, kRows, num_categories);
dh::device_vector<GradientPairPrecise> encode_hist(2 * num_categories);
for (auto const &batch : encode_m->GetBatches<EllpackPage>(batch_param)) {
auto* page = batch.Impl();
FeatureGroups single_group(page->Cuts());
BuildGradientHistogram(page->GetDeviceAccessor(0),
single_group.DeviceAccessor(0),
gpair.DeviceSpan(), ridx, dh::ToSpan(encode_hist),
rounding);
}
std::vector<GradientPairPrecise> h_cat_hist(cat_hist.size());
thrust::copy(cat_hist.begin(), cat_hist.end(), h_cat_hist.begin());
auto cat_sum = std::accumulate(h_cat_hist.begin(), h_cat_hist.end(), GradientPairPrecise{});
std::vector<GradientPairPrecise> h_encode_hist(encode_hist.size());
thrust::copy(encode_hist.begin(), encode_hist.end(), h_encode_hist.begin());
ValidateCategoricalHistogram(num_categories,
common::Span<GradientPairPrecise>{h_encode_hist},
common::Span<GradientPairPrecise>{h_cat_hist});
}
TEST(Histogram, GPUHistCategorical) {
for (size_t num_categories = 2; num_categories < 8; ++num_categories) {
TestGPUHistogramCategorical(num_categories);
}
}
} // namespace tree
} // namespace xgboost