omp_get_max_threads (#7608)
This is the one last PR for removing omp global variable. * Add context object to the `DMatrix`. This bridges `DMatrix` with https://github.com/dmlc/xgboost/issues/7308 . * Require context to be available at the construction time of booster. * Add `n_threads` support for R csc DMatrix constructor. * Remove `omp_get_max_threads` in R glue code. * Remove threading utilities that rely on omp global variable.
eXtreme Gradient Boosting
Community | Documentation | Resources | Contributors | Release Notes
XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond billions of examples.
License
© Contributors, 2021. Licensed under an Apache-2 license.
Contribute to XGBoost
XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page.
Reference
- Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
- XGBoost originates from research project at University of Washington.
Sponsors
Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).
Open Source Collective sponsors
Sponsors
Backers
Other sponsors
The sponsors in this list are donating cloud hours in lieu of cash donation.

