242 lines
9.7 KiB
Python
242 lines
9.7 KiB
Python
# Author: Tianqi Chen, Bing Xu
|
|
# module for xgboost
|
|
import ctypes
|
|
import os
|
|
# optinally have scipy sparse, though not necessary
|
|
import numpy
|
|
import sys
|
|
import numpy.ctypeslib
|
|
import scipy.sparse as scp
|
|
|
|
# set this line correctly
|
|
XGBOOST_PATH = os.path.dirname(__file__)+'/libxgboostwrapper.so'
|
|
|
|
# load in xgboost library
|
|
xglib = ctypes.cdll.LoadLibrary(XGBOOST_PATH)
|
|
|
|
xglib.XGDMatrixCreateFromFile.restype = ctypes.c_void_p
|
|
xglib.XGDMatrixCreateFromCSR.restype = ctypes.c_void_p
|
|
xglib.XGDMatrixCreateFromMat.restype = ctypes.c_void_p
|
|
xglib.XGDMatrixSliceDMatrix.restype = ctypes.c_void_p
|
|
xglib.XGDMatrixGetLabel.restype = ctypes.POINTER(ctypes.c_float)
|
|
xglib.XGDMatrixGetWeight.restype = ctypes.POINTER(ctypes.c_float)
|
|
xglib.XGDMatrixNumRow.restype = ctypes.c_ulong
|
|
|
|
xglib.XGBoosterCreate.restype = ctypes.c_void_p
|
|
xglib.XGBoosterPredict.restype = ctypes.POINTER(ctypes.c_float)
|
|
xglib.XGBoosterEvalOneIter.restype = ctypes.c_char_p
|
|
xglib.XGBoosterDumpModel.restype = ctypes.POINTER(ctypes.c_char_p)
|
|
|
|
|
|
def ctypes2numpy(cptr, length):
|
|
# convert a ctypes pointer array to numpy
|
|
assert isinstance(cptr, ctypes.POINTER(ctypes.c_float))
|
|
res = numpy.zeros(length, dtype='float32')
|
|
assert ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0])
|
|
return res
|
|
|
|
# data matrix used in xgboost
|
|
class DMatrix:
|
|
# constructor
|
|
def __init__(self, data, label=None, missing=0.0, weight = None):
|
|
# force into void_p, mac need to pass things in as void_p
|
|
if data == None:
|
|
self.handle = None
|
|
return
|
|
if isinstance(data, str):
|
|
self.handle = ctypes.c_void_p(
|
|
xglib.XGDMatrixCreateFromFile(ctypes.c_char_p(data.encode('utf-8')), 1))
|
|
elif isinstance(data, scp.csr_matrix):
|
|
self.__init_from_csr(data)
|
|
elif isinstance(data, numpy.ndarray) and len(data.shape) == 2:
|
|
self.__init_from_npy2d(data, missing)
|
|
else:
|
|
try:
|
|
csr = scp.csr_matrix(data)
|
|
self.__init_from_csr(csr)
|
|
except:
|
|
raise Exception("can not intialize DMatrix from"+str(type(data)))
|
|
if label != None:
|
|
self.set_label(label)
|
|
if weight !=None:
|
|
self.set_weight(weight)
|
|
# convert data from csr matrix
|
|
def __init_from_csr(self, csr):
|
|
assert len(csr.indices) == len(csr.data)
|
|
self.handle = ctypes.c_void_p(xglib.XGDMatrixCreateFromCSR(
|
|
(ctypes.c_ulong * len(csr.indptr))(*csr.indptr),
|
|
(ctypes.c_uint * len(csr.indices))(*csr.indices),
|
|
(ctypes.c_float * len(csr.data))(*csr.data),
|
|
len(csr.indptr), len(csr.data)))
|
|
# convert data from numpy matrix
|
|
def __init_from_npy2d(self,mat,missing):
|
|
data = numpy.array(mat.reshape(mat.size), dtype='float32')
|
|
self.handle = ctypes.c_void_p(xglib.XGDMatrixCreateFromMat(
|
|
data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
|
|
mat.shape[0], mat.shape[1], ctypes.c_float(missing)))
|
|
# destructor
|
|
def __del__(self):
|
|
xglib.XGDMatrixFree(self.handle)
|
|
# load data from file
|
|
def save_binary(self, fname, silent=True):
|
|
xglib.XGDMatrixSaveBinary(self.handle, ctypes.c_char_p(fname.encode('utf-8')), int(silent))
|
|
# set label of dmatrix
|
|
def set_label(self, label):
|
|
xglib.XGDMatrixSetLabel(self.handle, (ctypes.c_float*len(label))(*label), len(label))
|
|
# set group size of dmatrix, used for rank
|
|
def set_group(self, group):
|
|
xglib.XGDMatrixSetGroup(self.handle, (ctypes.c_uint*len(group))(*group), len(group))
|
|
# set weight of each instances
|
|
def set_weight(self, weight):
|
|
xglib.XGDMatrixSetWeight(self.handle, (ctypes.c_float*len(weight))(*weight), len(weight))
|
|
# get label from dmatrix
|
|
def get_label(self):
|
|
length = ctypes.c_ulong()
|
|
labels = xglib.XGDMatrixGetLabel(self.handle, ctypes.byref(length))
|
|
return ctypes2numpy(labels, length.value)
|
|
# get weight from dmatrix
|
|
def get_weight(self):
|
|
length = ctypes.c_ulong()
|
|
weights = xglib.XGDMatrixGetWeight(self.handle, ctypes.byref(length))
|
|
return ctypes2numpy(weights, length.value)
|
|
def num_row(self):
|
|
return xglib.XGDMatrixNumRow(self.handle)
|
|
# slice the DMatrix to return a new DMatrix that only contains rindex
|
|
def slice(self, rindex):
|
|
res = DMatrix(None)
|
|
res.handle = ctype.c_void_p(xglib.XGDMatrixSliceDMatrix(
|
|
self.handle, (ctypes.c_int*len(rindex))(*rindex), len(rindex)))
|
|
return res
|
|
|
|
class Booster:
|
|
"""learner class """
|
|
def __init__(self, params={}, cache=[]):
|
|
""" constructor, param: """
|
|
for d in cache:
|
|
assert isinstance(d, DMatrix)
|
|
dmats = (ctypes.c_void_p * len(cache))(*[ d.handle for d in cache])
|
|
self.handle = ctypes.c_void_p(xglib.XGBoosterCreate(dmats, len(cache)))
|
|
self.set_param({'seed':0})
|
|
self.set_param(params)
|
|
def __del__(self):
|
|
xglib.XGBoosterFree(self.handle)
|
|
def set_param(self, params, pv=None):
|
|
if isinstance(params, dict):
|
|
for k, v in params.items():
|
|
xglib.XGBoosterSetParam(
|
|
self.handle, ctypes.c_char_p(k.encode('utf-8')),
|
|
ctypes.c_char_p(str(v).encode('utf-8')))
|
|
elif isinstance(params,str) and pv != None:
|
|
xglib.XGBoosterSetParam(
|
|
self.handle, ctypes.c_char_p(params.encode('utf-8')),
|
|
ctypes.c_char_p(str(pv).encode('utf-8')))
|
|
else:
|
|
for k, v in params:
|
|
xglib.XGBoosterSetParam(
|
|
self.handle, ctypes.c_char_p(k.encode('utf-8')),
|
|
ctypes.c_char_p(str(v).encode('utf-8')))
|
|
def update(self, dtrain, it):
|
|
"""
|
|
update
|
|
dtrain: the training DMatrix
|
|
it: current iteration number
|
|
"""
|
|
assert isinstance(dtrain, DMatrix)
|
|
xglib.XGBoosterUpdateOneIter(self.handle, it, dtrain.handle)
|
|
def boost(self, dtrain, grad, hess):
|
|
""" update """
|
|
assert len(grad) == len(hess)
|
|
assert isinstance(dtrain, DMatrix)
|
|
xglib.XGBoosterBoostOneIter(self.handle, dtrain.handle,
|
|
(ctypes.c_float*len(grad))(*grad),
|
|
(ctypes.c_float*len(hess))(*hess),
|
|
len(grad))
|
|
def eval_set(self, evals, it = 0):
|
|
for d in evals:
|
|
assert isinstance(d[0], DMatrix)
|
|
assert isinstance(d[1], str)
|
|
dmats = (ctypes.c_void_p * len(evals) )(*[ d[0].handle for d in evals])
|
|
evnames = (ctypes.c_char_p * len(evals))(
|
|
* [ctypes.c_char_p(d[1].encode('utf-8')) for d in evals])
|
|
return xglib.XGBoosterEvalOneIter(self.handle, it, dmats, evnames, len(evals))
|
|
def eval(self, mat, name = 'eval', it = 0):
|
|
return self.eval_set( [(mat,name)], it)
|
|
def predict(self, data):
|
|
length = ctypes.c_ulong()
|
|
preds = xglib.XGBoosterPredict(self.handle, data.handle, ctypes.byref(length))
|
|
return ctypes2numpy(preds, length.value)
|
|
def save_model(self, fname):
|
|
""" save model to file """
|
|
xglib.XGBoosterSaveModel(self.handle, ctypes.c_char_p(fname.encode('utf-8')))
|
|
def load_model(self, fname):
|
|
"""load model from file"""
|
|
xglib.XGBoosterLoadModel( self.handle, ctypes.c_char_p(fname.encode('utf-8')) )
|
|
def dump_model(self, fo, fmap=''):
|
|
"""dump model into text file"""
|
|
if isinstance(fo,str):
|
|
fo = open(fo,'w')
|
|
need_close = True
|
|
else:
|
|
need_close = False
|
|
ret = self.get_dump(fmap)
|
|
for i in range(len(ret)):
|
|
fo.write('booster[%d]:\n' %i)
|
|
fo.write( ret[i] )
|
|
if need_close:
|
|
fo.close()
|
|
def get_dump(self, fmap=''):
|
|
"""get dump of model as list of strings """
|
|
length = ctypes.c_ulong()
|
|
sarr = xglib.XGBoosterDumpModel(self.handle, ctypes.c_char_p(fmap.encode('utf-8')), ctypes.byref(length))
|
|
res = []
|
|
for i in range(length.value):
|
|
res.append( str(sarr[i]) )
|
|
return res
|
|
def get_fscore(self, fmap=''):
|
|
""" get feature importance of each feature """
|
|
trees = self.get_dump(fmap)
|
|
fmap = {}
|
|
for tree in trees:
|
|
print tree
|
|
for l in tree.split('\n'):
|
|
arr = l.split('[')
|
|
if len(arr) == 1:
|
|
continue
|
|
fid = arr[1].split(']')[0]
|
|
fid = fid.split('<')[0]
|
|
if fid not in fmap:
|
|
fmap[fid] = 1
|
|
else:
|
|
fmap[fid]+= 1
|
|
return fmap
|
|
|
|
def evaluate(bst, evals, it, feval = None):
|
|
"""evaluation on eval set"""
|
|
if feval != None:
|
|
res = '[%d]' % it
|
|
for dm, evname in evals:
|
|
name, val = feval(bst.predict(dm), dm)
|
|
res += '\t%s-%s:%f' % (evname, name, val)
|
|
else:
|
|
res = bst.eval_set(evals, it)
|
|
|
|
return res
|
|
|
|
def train(params, dtrain, num_boost_round = 10, evals = [], obj=None, feval=None):
|
|
""" train a booster with given paramaters """
|
|
bst = Booster(params, [dtrain]+[ d[0] for d in evals ] )
|
|
if obj == None:
|
|
for i in range(num_boost_round):
|
|
bst.update( dtrain, i )
|
|
if len(evals) != 0:
|
|
sys.stderr.write(evaluate(bst, evals, i, feval)+'\n')
|
|
else:
|
|
# try customized objective function
|
|
for i in range(num_boost_round):
|
|
pred = bst.predict( dtrain )
|
|
grad, hess = obj( pred, dtrain )
|
|
bst.boost( dtrain, grad, hess )
|
|
if len(evals) != 0:
|
|
sys.stderr.write(evaluate(bst, evals, i, feval)+'\n')
|
|
return bst
|