xgboost/R-package/DESCRIPTION
Philip Hyunsu Cho 7ac7e8778f
Port patches from 1.0.0 branch (#5336)
* Remove f-string, since it's not supported by Python 3.5 (#5330)

* Remove f-string, since it's not supported by Python 3.5

* Add Python 3.5 to CI, to ensure compatibility

* Remove duplicated matplotlib

* Show deprecation notice for Python 3.5

* Fix lint

* Fix lint

* Fix a unit test that mistook MINOR ver for PATCH ver

* Enforce only major version in JSON model schema

* Bump version to 1.1.0-SNAPSHOT
2020-02-21 13:13:21 -08:00

68 lines
2.4 KiB
Plaintext

Package: xgboost
Type: Package
Title: Extreme Gradient Boosting
Version: 1.1.0.1
Date: 2020-02-21
Authors@R: c(
person("Tianqi", "Chen", role = c("aut"),
email = "tianqi.tchen@gmail.com"),
person("Tong", "He", role = c("aut", "cre"),
email = "hetong007@gmail.com"),
person("Michael", "Benesty", role = c("aut"),
email = "michael@benesty.fr"),
person("Vadim", "Khotilovich", role = c("aut"),
email = "khotilovich@gmail.com"),
person("Yuan", "Tang", role = c("aut"),
email = "terrytangyuan@gmail.com",
comment = c(ORCID = "0000-0001-5243-233X")),
person("Hyunsu", "Cho", role = c("aut"),
email = "chohyu01@cs.washington.edu"),
person("Kailong", "Chen", role = c("aut")),
person("Rory", "Mitchell", role = c("aut")),
person("Ignacio", "Cano", role = c("aut")),
person("Tianyi", "Zhou", role = c("aut")),
person("Mu", "Li", role = c("aut")),
person("Junyuan", "Xie", role = c("aut")),
person("Min", "Lin", role = c("aut")),
person("Yifeng", "Geng", role = c("aut")),
person("Yutian", "Li", role = c("aut")),
person("XGBoost contributors", role = c("cph"),
comment = "base XGBoost implementation")
)
Description: Extreme Gradient Boosting, which is an efficient implementation
of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package is its R interface. The package includes efficient linear
model solver and tree learning algorithms. The package can automatically
do parallel computation on a single machine which could be more than 10
times faster than existing gradient boosting packages. It supports
various objective functions, including regression, classification and ranking.
The package is made to be extensible, so that users are also allowed to define
their own objectives easily.
License: Apache License (== 2.0) | file LICENSE
URL: https://github.com/dmlc/xgboost
BugReports: https://github.com/dmlc/xgboost/issues
NeedsCompilation: yes
VignetteBuilder: knitr
Suggests:
knitr,
rmarkdown,
ggplot2 (>= 1.0.1),
DiagrammeR (>= 0.9.0),
Ckmeans.1d.dp (>= 3.3.1),
vcd (>= 1.3),
testthat,
lintr,
igraph (>= 1.0.1),
jsonlite,
float
Depends:
R (>= 3.3.0)
Imports:
Matrix (>= 1.1-0),
methods,
data.table (>= 1.9.6),
magrittr (>= 1.5),
stringi (>= 0.5.2)
RoxygenNote: 7.0.2
SystemRequirements: GNU make, C++11