xgboost/src/common/hist_util.h
Jiaming Yuan d9a47794a5 Fix CPU hist init for sparse dataset. (#4625)
* Fix CPU hist init for sparse dataset.

* Implement sparse histogram cut.
* Allow empty features.

* Fix windows build, don't use sparse in distributed environment.

* Comments.

* Smaller threshold.

* Fix windows omp.

* Fix msvc lambda capture.

* Fix MSVC macro.

* Fix MSVC initialization list.

* Fix MSVC initialization list x2.

* Preserve categorical feature behavior.

* Rename matrix to sparse cuts.
* Reuse UseGroup.
* Check for categorical data when adding cut.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>

* Sanity check.

* Fix comments.

* Fix comment.
2019-07-04 16:27:03 -07:00

564 lines
16 KiB
C++

/*!
* Copyright 2017 by Contributors
* \file hist_util.h
* \brief Utility for fast histogram aggregation
* \author Philip Cho, Tianqi Chen
*/
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
#define XGBOOST_COMMON_HIST_UTIL_H_
#include <xgboost/data.h>
#include <xgboost/generic_parameters.h>
#include <limits>
#include <vector>
#include <algorithm>
#include <memory>
#include <utility>
#include "row_set.h"
#include "../tree/param.h"
#include "./quantile.h"
#include "./timer.h"
#include "random.h"
namespace xgboost {
/*!
* \brief A C-style array with in-stack allocation. As long as the array is smaller than
* MaxStackSize, it will be allocated inside the stack. Otherwise, it will be
* heap-allocated.
*/
template<typename T, size_t MaxStackSize>
class MemStackAllocator {
public:
explicit MemStackAllocator(size_t required_size): required_size_(required_size) {
}
T* Get() {
if (!ptr_) {
if (MaxStackSize >= required_size_) {
ptr_ = stack_mem_;
} else {
ptr_ = reinterpret_cast<T*>(malloc(required_size_ * sizeof(T)));
do_free_ = true;
}
}
return ptr_;
}
~MemStackAllocator() {
if (do_free_) free(ptr_);
}
private:
T* ptr_ = nullptr;
bool do_free_ = false;
size_t required_size_;
T stack_mem_[MaxStackSize];
};
namespace common {
/*
* \brief A thin wrapper around dynamically allocated C-style array.
* Make sure to call resize() before use.
*/
template<typename T>
struct SimpleArray {
~SimpleArray() {
free(ptr_);
ptr_ = nullptr;
}
void resize(size_t n) {
T* ptr = static_cast<T*>(malloc(n*sizeof(T)));
memcpy(ptr, ptr_, n_ * sizeof(T));
free(ptr_);
ptr_ = ptr;
n_ = n;
}
T& operator[](size_t idx) {
return ptr_[idx];
}
T& operator[](size_t idx) const {
return ptr_[idx];
}
size_t size() const {
return n_;
}
T back() const {
return ptr_[n_-1];
}
T* data() {
return ptr_;
}
const T* data() const {
return ptr_;
}
T* begin() {
return ptr_;
}
const T* begin() const {
return ptr_;
}
T* end() {
return ptr_ + n_;
}
const T* end() const {
return ptr_ + n_;
}
private:
T* ptr_ = nullptr;
size_t n_ = 0;
};
/*!
* \brief A single row in global histogram index.
* Directly represent the global index in the histogram entry.
*/
using GHistIndexRow = Span<uint32_t const>;
// A CSC matrix representing histogram cuts, used in CPU quantile hist.
class HistogramCuts {
// Using friends to avoid creating a virtual class, since HistogramCuts is used as value
// object in many places.
friend class SparseCuts;
friend class DenseCuts;
friend class CutsBuilder;
protected:
using BinIdx = uint32_t;
common::Monitor monitor_;
std::vector<bst_float> cut_values_;
std::vector<uint32_t> cut_ptrs_;
std::vector<float> min_vals_; // storing minimum value in a sketch set.
public:
HistogramCuts();
HistogramCuts(HistogramCuts const& that) = delete;
HistogramCuts(HistogramCuts&& that) noexcept(true) {
*this = std::forward<HistogramCuts&&>(that);
}
HistogramCuts& operator=(HistogramCuts const& that) = delete;
HistogramCuts& operator=(HistogramCuts&& that) noexcept(true) {
monitor_ = std::move(that.monitor_);
cut_ptrs_ = std::move(that.cut_ptrs_);
cut_values_ = std::move(that.cut_values_);
min_vals_ = std::move(that.min_vals_);
return *this;
}
/* \brief Build histogram cuts. */
void Build(DMatrix* dmat, uint32_t const max_num_bins);
/* \brief How many bins a feature has. */
uint32_t FeatureBins(uint32_t feature) const {
return cut_ptrs_.at(feature+1) - cut_ptrs_[feature];
}
// Getters. Cuts should be of no use after building histogram indices, but currently
// it's deeply linked with quantile_hist, gpu sketcher and gpu_hist. So we preserve
// these for now.
std::vector<uint32_t> const& Ptrs() const { return cut_ptrs_; }
std::vector<float> const& Values() const { return cut_values_; }
std::vector<float> const& MinValues() const { return min_vals_; }
size_t TotalBins() const { return cut_ptrs_.back(); }
BinIdx SearchBin(float value, uint32_t column_id) {
auto beg = cut_ptrs_.at(column_id);
auto end = cut_ptrs_.at(column_id + 1);
auto it = std::upper_bound(cut_values_.cbegin() + beg, cut_values_.cbegin() + end, value);
if (it == cut_values_.cend()) {
it = cut_values_.cend() - 1;
}
BinIdx idx = it - cut_values_.cbegin();
return idx;
}
BinIdx SearchBin(Entry const& e) {
return SearchBin(e.fvalue, e.index);
}
};
/* \brief An interface for building quantile cuts.
*
* `DenseCuts' always assumes there are `max_bins` for each feature, which makes it not
* suitable for sparse dataset. On the other hand `SparseCuts' uses `GetColumnBatches',
* which doubles the memory usage, hence can not be applied to dense dataset.
*/
class CutsBuilder {
public:
using WXQSketch = common::WXQuantileSketch<bst_float, bst_float>;
protected:
HistogramCuts* p_cuts_;
/* \brief return whether group for ranking is used. */
static bool UseGroup(DMatrix* dmat);
public:
explicit CutsBuilder(HistogramCuts* p_cuts) : p_cuts_{p_cuts} {}
virtual ~CutsBuilder() = default;
static uint32_t SearchGroupIndFromRow(
std::vector<bst_uint> const& group_ptr, size_t const base_rowid) {
using KIt = std::vector<bst_uint>::const_iterator;
KIt res = std::lower_bound(group_ptr.cbegin(), group_ptr.cend() - 1, base_rowid);
// Cannot use CHECK_NE because it will try to print the iterator.
bool const found = res != group_ptr.cend() - 1;
if (!found) {
LOG(FATAL) << "Row " << base_rowid << " does not lie in any group!";
}
uint32_t group_ind = std::distance(group_ptr.cbegin(), res);
return group_ind;
}
void AddCutPoint(WXQSketch::SummaryContainer const& summary) {
if (summary.size > 1 && summary.size <= 16) {
/* specialized code categorial / ordinal data -- use midpoints */
for (size_t i = 1; i < summary.size; ++i) {
bst_float cpt = (summary.data[i].value + summary.data[i - 1].value) / 2.0f;
if (i == 1 || cpt > p_cuts_->cut_values_.back()) {
p_cuts_->cut_values_.push_back(cpt);
}
}
} else {
for (size_t i = 2; i < summary.size; ++i) {
bst_float cpt = summary.data[i - 1].value;
if (i == 2 || cpt > p_cuts_->cut_values_.back()) {
p_cuts_->cut_values_.push_back(cpt);
}
}
}
}
/* \brief Build histogram indices. */
virtual void Build(DMatrix* dmat, uint32_t const max_num_bins) = 0;
};
/*! \brief Cut configuration for sparse dataset. */
class SparseCuts : public CutsBuilder {
/* \brief Distrbute columns to each thread according to number of entries. */
static std::vector<size_t> LoadBalance(SparsePage const& page, size_t const nthreads);
Monitor monitor_;
public:
explicit SparseCuts(HistogramCuts* container) :
CutsBuilder(container) {
monitor_.Init(__FUNCTION__);
}
/* \brief Concatonate the built cuts in each thread. */
void Concat(std::vector<std::unique_ptr<SparseCuts>> const& cuts, uint32_t n_cols);
/* \brief Build histogram indices in single thread. */
void SingleThreadBuild(SparsePage const& page, MetaInfo const& info,
uint32_t max_num_bins,
bool const use_group_ind,
uint32_t beg, uint32_t end, uint32_t thread_id);
void Build(DMatrix* dmat, uint32_t const max_num_bins) override;
};
/*! \brief Cut configuration for dense dataset. */
class DenseCuts : public CutsBuilder {
protected:
Monitor monitor_;
public:
explicit DenseCuts(HistogramCuts* container) :
CutsBuilder(container) {
monitor_.Init(__FUNCTION__);
}
void Init(std::vector<WXQSketch>* sketchs, uint32_t max_num_bins);
void Build(DMatrix* p_fmat, uint32_t max_num_bins) override;
};
// FIXME(trivialfis): Merge this into generic cut builder.
/*! \brief Builds the cut matrix on the GPU.
*
* \return The row stride across the entire dataset.
*/
size_t DeviceSketch
(const tree::TrainParam& param, const LearnerTrainParam &learner_param, int gpu_batch_nrows,
DMatrix* dmat, HistogramCuts* hmat);
/*!
* \brief preprocessed global index matrix, in CSR format
* Transform floating values to integer index in histogram
* This is a global histogram index.
*/
struct GHistIndexMatrix {
/*! \brief row pointer to rows by element position */
// std::vector<size_t> row_ptr;
SimpleArray<size_t> row_ptr;
/*! \brief The index data */
SimpleArray<uint32_t> index;
/*! \brief hit count of each index */
std::vector<size_t> hit_count;
/*! \brief The corresponding cuts */
HistogramCuts cut;
// Create a global histogram matrix, given cut
void Init(DMatrix* p_fmat, int max_num_bins);
// get i-th row
inline GHistIndexRow operator[](size_t i) const {
return {&index[0] + row_ptr[i],
static_cast<GHistIndexRow::index_type>(
row_ptr[i + 1] - row_ptr[i])};
}
inline void GetFeatureCounts(size_t* counts) const {
auto nfeature = cut.Ptrs().size() - 1;
for (unsigned fid = 0; fid < nfeature; ++fid) {
auto ibegin = cut.Ptrs()[fid];
auto iend = cut.Ptrs()[fid + 1];
for (auto i = ibegin; i < iend; ++i) {
counts[fid] += hit_count[i];
}
}
}
private:
std::vector<size_t> hit_count_tloc_;
};
struct GHistIndexBlock {
const size_t* row_ptr;
const uint32_t* index;
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
: row_ptr(row_ptr), index(index) {}
// get i-th row
inline GHistIndexRow operator[](size_t i) const {
return {&index[0] + row_ptr[i], detail::ptrdiff_t(row_ptr[i + 1] - row_ptr[i])};
}
};
class ColumnMatrix;
class GHistIndexBlockMatrix {
public:
void Init(const GHistIndexMatrix& gmat,
const ColumnMatrix& colmat,
const tree::TrainParam& param);
inline GHistIndexBlock operator[](size_t i) const {
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
}
inline size_t GetNumBlock() const {
return blocks_.size();
}
private:
std::vector<size_t> row_ptr_;
std::vector<uint32_t> index_;
const HistogramCuts* cut_;
struct Block {
const size_t* row_ptr_begin;
const size_t* row_ptr_end;
const uint32_t* index_begin;
const uint32_t* index_end;
};
std::vector<Block> blocks_;
};
/*!
* \brief used instead of GradStats to have float instead of double to reduce histograms
* this improves performance by 10-30% and memory consumption for histograms by 2x
* accuracy in both cases is the same
*/
struct GradStatHist {
typedef float GradType;
/*! \brief sum gradient statistics */
GradType sum_grad;
/*! \brief sum hessian statistics */
GradType sum_hess;
GradStatHist() : sum_grad{0}, sum_hess{0} {
static_assert(sizeof(GradStatHist) == 8,
"Size of GradStatHist is not 8 bytes.");
}
inline void Add(const GradStatHist& b) {
sum_grad += b.sum_grad;
sum_hess += b.sum_hess;
}
inline void Add(const tree::GradStats& b) {
sum_grad += b.sum_grad;
sum_hess += b.sum_hess;
}
inline void Add(const GradientPair& p) {
this->Add(p.GetGrad(), p.GetHess());
}
inline void Add(const GradType& grad, const GradType& hess) {
sum_grad += grad;
sum_hess += hess;
}
inline tree::GradStats ToGradStat() const {
return tree::GradStats(sum_grad, sum_hess);
}
inline void SetSubstract(const GradStatHist& a, const GradStatHist& b) {
sum_grad = a.sum_grad - b.sum_grad;
sum_hess = a.sum_hess - b.sum_hess;
}
inline void SetSubstract(const tree::GradStats& a, const GradStatHist& b) {
sum_grad = a.sum_grad - b.sum_grad;
sum_hess = a.sum_hess - b.sum_hess;
}
inline GradType GetGrad() const { return sum_grad; }
inline GradType GetHess() const { return sum_hess; }
inline static void Reduce(GradStatHist& a, const GradStatHist& b) { // NOLINT(*)
a.Add(b);
}
};
using GHistRow = Span<GradStatHist>;
/*!
* \brief histogram of gradient statistics for multiple nodes
*/
class HistCollection {
public:
// access histogram for i-th node
inline GHistRow operator[](bst_uint nid) {
AddHistRow(nid);
return { const_cast<GradStatHist*>(dmlc::BeginPtr(data_arr_[nid])), nbins_};
}
// have we computed a histogram for i-th node?
inline bool RowExists(bst_uint nid) const {
return nid < data_arr_.size();
}
// initialize histogram collection
inline void Init(uint32_t nbins) {
if (nbins_ != nbins) {
data_arr_.clear();
nbins_ = nbins;
}
}
// create an empty histogram for i-th node
inline void AddHistRow(bst_uint nid) {
if (data_arr_.size() <= nid) {
size_t prev = data_arr_.size();
data_arr_.resize(nid + 1);
for (size_t i = prev; i < data_arr_.size(); ++i) {
data_arr_[i].resize(nbins_);
}
}
}
private:
/*! \brief number of all bins over all features */
uint32_t nbins_ = 0;
std::vector<std::vector<GradStatHist>> data_arr_;
};
/*!
* \brief builder for histograms of gradient statistics
*/
class GHistBuilder {
public:
// initialize builder
inline void Init(size_t nthread, uint32_t nbins) {
nthread_ = nthread;
nbins_ = nbins;
}
void BuildBlockHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexBlockMatrix& gmatb,
GHistRow hist) {
constexpr int kUnroll = 8; // loop unrolling factor
const int32_t nblock = gmatb.GetNumBlock();
const size_t nrows = row_indices.end - row_indices.begin;
const size_t rest = nrows % kUnroll;
#pragma omp parallel for
for (int32_t bid = 0; bid < nblock; ++bid) {
auto gmat = gmatb[bid];
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
size_t rid[kUnroll];
size_t ibegin[kUnroll];
size_t iend[kUnroll];
GradientPair stat[kUnroll];
for (int k = 0; k < kUnroll; ++k) {
rid[k] = row_indices.begin[i + k];
}
for (int k = 0; k < kUnroll; ++k) {
ibegin[k] = gmat.row_ptr[rid[k]];
iend[k] = gmat.row_ptr[rid[k] + 1];
}
for (int k = 0; k < kUnroll; ++k) {
stat[k] = gpair[rid[k]];
}
for (int k = 0; k < kUnroll; ++k) {
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
const uint32_t bin = gmat.index[j];
hist[bin].Add(stat[k]);
}
}
}
for (size_t i = nrows - rest; i < nrows; ++i) {
const size_t rid = row_indices.begin[i];
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
const GradientPair stat = gpair[rid];
for (size_t j = ibegin; j < iend; ++j) {
const uint32_t bin = gmat.index[j];
hist[bin].Add(stat);
}
}
}
}
uint32_t GetNumBins() {
return nbins_;
}
private:
/*! \brief number of threads for parallel computation */
size_t nthread_;
/*! \brief number of all bins over all features */
uint32_t nbins_;
};
void BuildHistLocalDense(size_t istart, size_t iend, size_t nrows, const size_t* rid,
const uint32_t* index, const GradientPair::ValueT* pgh, const size_t* row_ptr,
GradStatHist::GradType* data_local_hist, GradStatHist* grad_stat);
void BuildHistLocalSparse(size_t istart, size_t iend, size_t nrows, const size_t* rid,
const uint32_t* index, const GradientPair::ValueT* pgh, const size_t* row_ptr,
GradStatHist::GradType* data_local_hist, GradStatHist* grad_stat);
void SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent);
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_HIST_UTIL_H_