* Fix CPU hist init for sparse dataset. * Implement sparse histogram cut. * Allow empty features. * Fix windows build, don't use sparse in distributed environment. * Comments. * Smaller threshold. * Fix windows omp. * Fix msvc lambda capture. * Fix MSVC macro. * Fix MSVC initialization list. * Fix MSVC initialization list x2. * Preserve categorical feature behavior. * Rename matrix to sparse cuts. * Reuse UseGroup. * Check for categorical data when adding cut. Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu> * Sanity check. * Fix comments. * Fix comment.
564 lines
16 KiB
C++
564 lines
16 KiB
C++
/*!
|
|
* Copyright 2017 by Contributors
|
|
* \file hist_util.h
|
|
* \brief Utility for fast histogram aggregation
|
|
* \author Philip Cho, Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
|
|
#define XGBOOST_COMMON_HIST_UTIL_H_
|
|
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "row_set.h"
|
|
#include "../tree/param.h"
|
|
#include "./quantile.h"
|
|
#include "./timer.h"
|
|
#include "random.h"
|
|
|
|
namespace xgboost {
|
|
|
|
/*!
|
|
* \brief A C-style array with in-stack allocation. As long as the array is smaller than
|
|
* MaxStackSize, it will be allocated inside the stack. Otherwise, it will be
|
|
* heap-allocated.
|
|
*/
|
|
template<typename T, size_t MaxStackSize>
|
|
class MemStackAllocator {
|
|
public:
|
|
explicit MemStackAllocator(size_t required_size): required_size_(required_size) {
|
|
}
|
|
|
|
T* Get() {
|
|
if (!ptr_) {
|
|
if (MaxStackSize >= required_size_) {
|
|
ptr_ = stack_mem_;
|
|
} else {
|
|
ptr_ = reinterpret_cast<T*>(malloc(required_size_ * sizeof(T)));
|
|
do_free_ = true;
|
|
}
|
|
}
|
|
|
|
return ptr_;
|
|
}
|
|
|
|
~MemStackAllocator() {
|
|
if (do_free_) free(ptr_);
|
|
}
|
|
|
|
private:
|
|
T* ptr_ = nullptr;
|
|
bool do_free_ = false;
|
|
size_t required_size_;
|
|
T stack_mem_[MaxStackSize];
|
|
};
|
|
|
|
namespace common {
|
|
|
|
/*
|
|
* \brief A thin wrapper around dynamically allocated C-style array.
|
|
* Make sure to call resize() before use.
|
|
*/
|
|
template<typename T>
|
|
struct SimpleArray {
|
|
~SimpleArray() {
|
|
free(ptr_);
|
|
ptr_ = nullptr;
|
|
}
|
|
|
|
void resize(size_t n) {
|
|
T* ptr = static_cast<T*>(malloc(n*sizeof(T)));
|
|
memcpy(ptr, ptr_, n_ * sizeof(T));
|
|
free(ptr_);
|
|
ptr_ = ptr;
|
|
n_ = n;
|
|
}
|
|
|
|
T& operator[](size_t idx) {
|
|
return ptr_[idx];
|
|
}
|
|
|
|
T& operator[](size_t idx) const {
|
|
return ptr_[idx];
|
|
}
|
|
|
|
size_t size() const {
|
|
return n_;
|
|
}
|
|
|
|
T back() const {
|
|
return ptr_[n_-1];
|
|
}
|
|
|
|
T* data() {
|
|
return ptr_;
|
|
}
|
|
|
|
const T* data() const {
|
|
return ptr_;
|
|
}
|
|
|
|
|
|
T* begin() {
|
|
return ptr_;
|
|
}
|
|
|
|
const T* begin() const {
|
|
return ptr_;
|
|
}
|
|
|
|
T* end() {
|
|
return ptr_ + n_;
|
|
}
|
|
|
|
const T* end() const {
|
|
return ptr_ + n_;
|
|
}
|
|
|
|
private:
|
|
T* ptr_ = nullptr;
|
|
size_t n_ = 0;
|
|
};
|
|
|
|
/*!
|
|
* \brief A single row in global histogram index.
|
|
* Directly represent the global index in the histogram entry.
|
|
*/
|
|
using GHistIndexRow = Span<uint32_t const>;
|
|
|
|
// A CSC matrix representing histogram cuts, used in CPU quantile hist.
|
|
class HistogramCuts {
|
|
// Using friends to avoid creating a virtual class, since HistogramCuts is used as value
|
|
// object in many places.
|
|
friend class SparseCuts;
|
|
friend class DenseCuts;
|
|
friend class CutsBuilder;
|
|
|
|
protected:
|
|
using BinIdx = uint32_t;
|
|
common::Monitor monitor_;
|
|
|
|
std::vector<bst_float> cut_values_;
|
|
std::vector<uint32_t> cut_ptrs_;
|
|
std::vector<float> min_vals_; // storing minimum value in a sketch set.
|
|
|
|
public:
|
|
HistogramCuts();
|
|
HistogramCuts(HistogramCuts const& that) = delete;
|
|
HistogramCuts(HistogramCuts&& that) noexcept(true) {
|
|
*this = std::forward<HistogramCuts&&>(that);
|
|
}
|
|
HistogramCuts& operator=(HistogramCuts const& that) = delete;
|
|
HistogramCuts& operator=(HistogramCuts&& that) noexcept(true) {
|
|
monitor_ = std::move(that.monitor_);
|
|
cut_ptrs_ = std::move(that.cut_ptrs_);
|
|
cut_values_ = std::move(that.cut_values_);
|
|
min_vals_ = std::move(that.min_vals_);
|
|
return *this;
|
|
}
|
|
|
|
/* \brief Build histogram cuts. */
|
|
void Build(DMatrix* dmat, uint32_t const max_num_bins);
|
|
/* \brief How many bins a feature has. */
|
|
uint32_t FeatureBins(uint32_t feature) const {
|
|
return cut_ptrs_.at(feature+1) - cut_ptrs_[feature];
|
|
}
|
|
|
|
// Getters. Cuts should be of no use after building histogram indices, but currently
|
|
// it's deeply linked with quantile_hist, gpu sketcher and gpu_hist. So we preserve
|
|
// these for now.
|
|
std::vector<uint32_t> const& Ptrs() const { return cut_ptrs_; }
|
|
std::vector<float> const& Values() const { return cut_values_; }
|
|
std::vector<float> const& MinValues() const { return min_vals_; }
|
|
|
|
size_t TotalBins() const { return cut_ptrs_.back(); }
|
|
|
|
BinIdx SearchBin(float value, uint32_t column_id) {
|
|
auto beg = cut_ptrs_.at(column_id);
|
|
auto end = cut_ptrs_.at(column_id + 1);
|
|
auto it = std::upper_bound(cut_values_.cbegin() + beg, cut_values_.cbegin() + end, value);
|
|
if (it == cut_values_.cend()) {
|
|
it = cut_values_.cend() - 1;
|
|
}
|
|
BinIdx idx = it - cut_values_.cbegin();
|
|
return idx;
|
|
}
|
|
|
|
BinIdx SearchBin(Entry const& e) {
|
|
return SearchBin(e.fvalue, e.index);
|
|
}
|
|
};
|
|
|
|
/* \brief An interface for building quantile cuts.
|
|
*
|
|
* `DenseCuts' always assumes there are `max_bins` for each feature, which makes it not
|
|
* suitable for sparse dataset. On the other hand `SparseCuts' uses `GetColumnBatches',
|
|
* which doubles the memory usage, hence can not be applied to dense dataset.
|
|
*/
|
|
class CutsBuilder {
|
|
public:
|
|
using WXQSketch = common::WXQuantileSketch<bst_float, bst_float>;
|
|
|
|
protected:
|
|
HistogramCuts* p_cuts_;
|
|
/* \brief return whether group for ranking is used. */
|
|
static bool UseGroup(DMatrix* dmat);
|
|
|
|
public:
|
|
explicit CutsBuilder(HistogramCuts* p_cuts) : p_cuts_{p_cuts} {}
|
|
virtual ~CutsBuilder() = default;
|
|
|
|
static uint32_t SearchGroupIndFromRow(
|
|
std::vector<bst_uint> const& group_ptr, size_t const base_rowid) {
|
|
using KIt = std::vector<bst_uint>::const_iterator;
|
|
KIt res = std::lower_bound(group_ptr.cbegin(), group_ptr.cend() - 1, base_rowid);
|
|
// Cannot use CHECK_NE because it will try to print the iterator.
|
|
bool const found = res != group_ptr.cend() - 1;
|
|
if (!found) {
|
|
LOG(FATAL) << "Row " << base_rowid << " does not lie in any group!";
|
|
}
|
|
uint32_t group_ind = std::distance(group_ptr.cbegin(), res);
|
|
return group_ind;
|
|
}
|
|
|
|
void AddCutPoint(WXQSketch::SummaryContainer const& summary) {
|
|
if (summary.size > 1 && summary.size <= 16) {
|
|
/* specialized code categorial / ordinal data -- use midpoints */
|
|
for (size_t i = 1; i < summary.size; ++i) {
|
|
bst_float cpt = (summary.data[i].value + summary.data[i - 1].value) / 2.0f;
|
|
if (i == 1 || cpt > p_cuts_->cut_values_.back()) {
|
|
p_cuts_->cut_values_.push_back(cpt);
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 2; i < summary.size; ++i) {
|
|
bst_float cpt = summary.data[i - 1].value;
|
|
if (i == 2 || cpt > p_cuts_->cut_values_.back()) {
|
|
p_cuts_->cut_values_.push_back(cpt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* \brief Build histogram indices. */
|
|
virtual void Build(DMatrix* dmat, uint32_t const max_num_bins) = 0;
|
|
};
|
|
|
|
/*! \brief Cut configuration for sparse dataset. */
|
|
class SparseCuts : public CutsBuilder {
|
|
/* \brief Distrbute columns to each thread according to number of entries. */
|
|
static std::vector<size_t> LoadBalance(SparsePage const& page, size_t const nthreads);
|
|
Monitor monitor_;
|
|
|
|
public:
|
|
explicit SparseCuts(HistogramCuts* container) :
|
|
CutsBuilder(container) {
|
|
monitor_.Init(__FUNCTION__);
|
|
}
|
|
|
|
/* \brief Concatonate the built cuts in each thread. */
|
|
void Concat(std::vector<std::unique_ptr<SparseCuts>> const& cuts, uint32_t n_cols);
|
|
/* \brief Build histogram indices in single thread. */
|
|
void SingleThreadBuild(SparsePage const& page, MetaInfo const& info,
|
|
uint32_t max_num_bins,
|
|
bool const use_group_ind,
|
|
uint32_t beg, uint32_t end, uint32_t thread_id);
|
|
void Build(DMatrix* dmat, uint32_t const max_num_bins) override;
|
|
};
|
|
|
|
/*! \brief Cut configuration for dense dataset. */
|
|
class DenseCuts : public CutsBuilder {
|
|
protected:
|
|
Monitor monitor_;
|
|
|
|
public:
|
|
explicit DenseCuts(HistogramCuts* container) :
|
|
CutsBuilder(container) {
|
|
monitor_.Init(__FUNCTION__);
|
|
}
|
|
void Init(std::vector<WXQSketch>* sketchs, uint32_t max_num_bins);
|
|
void Build(DMatrix* p_fmat, uint32_t max_num_bins) override;
|
|
};
|
|
|
|
// FIXME(trivialfis): Merge this into generic cut builder.
|
|
/*! \brief Builds the cut matrix on the GPU.
|
|
*
|
|
* \return The row stride across the entire dataset.
|
|
*/
|
|
size_t DeviceSketch
|
|
(const tree::TrainParam& param, const LearnerTrainParam &learner_param, int gpu_batch_nrows,
|
|
DMatrix* dmat, HistogramCuts* hmat);
|
|
|
|
|
|
/*!
|
|
* \brief preprocessed global index matrix, in CSR format
|
|
* Transform floating values to integer index in histogram
|
|
* This is a global histogram index.
|
|
*/
|
|
struct GHistIndexMatrix {
|
|
/*! \brief row pointer to rows by element position */
|
|
// std::vector<size_t> row_ptr;
|
|
SimpleArray<size_t> row_ptr;
|
|
/*! \brief The index data */
|
|
SimpleArray<uint32_t> index;
|
|
/*! \brief hit count of each index */
|
|
std::vector<size_t> hit_count;
|
|
/*! \brief The corresponding cuts */
|
|
HistogramCuts cut;
|
|
// Create a global histogram matrix, given cut
|
|
void Init(DMatrix* p_fmat, int max_num_bins);
|
|
// get i-th row
|
|
inline GHistIndexRow operator[](size_t i) const {
|
|
return {&index[0] + row_ptr[i],
|
|
static_cast<GHistIndexRow::index_type>(
|
|
row_ptr[i + 1] - row_ptr[i])};
|
|
}
|
|
inline void GetFeatureCounts(size_t* counts) const {
|
|
auto nfeature = cut.Ptrs().size() - 1;
|
|
for (unsigned fid = 0; fid < nfeature; ++fid) {
|
|
auto ibegin = cut.Ptrs()[fid];
|
|
auto iend = cut.Ptrs()[fid + 1];
|
|
for (auto i = ibegin; i < iend; ++i) {
|
|
counts[fid] += hit_count[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> hit_count_tloc_;
|
|
};
|
|
|
|
struct GHistIndexBlock {
|
|
const size_t* row_ptr;
|
|
const uint32_t* index;
|
|
|
|
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
|
|
: row_ptr(row_ptr), index(index) {}
|
|
|
|
// get i-th row
|
|
inline GHistIndexRow operator[](size_t i) const {
|
|
return {&index[0] + row_ptr[i], detail::ptrdiff_t(row_ptr[i + 1] - row_ptr[i])};
|
|
}
|
|
};
|
|
|
|
class ColumnMatrix;
|
|
|
|
class GHistIndexBlockMatrix {
|
|
public:
|
|
void Init(const GHistIndexMatrix& gmat,
|
|
const ColumnMatrix& colmat,
|
|
const tree::TrainParam& param);
|
|
|
|
inline GHistIndexBlock operator[](size_t i) const {
|
|
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
|
|
}
|
|
|
|
inline size_t GetNumBlock() const {
|
|
return blocks_.size();
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> row_ptr_;
|
|
std::vector<uint32_t> index_;
|
|
const HistogramCuts* cut_;
|
|
struct Block {
|
|
const size_t* row_ptr_begin;
|
|
const size_t* row_ptr_end;
|
|
const uint32_t* index_begin;
|
|
const uint32_t* index_end;
|
|
};
|
|
std::vector<Block> blocks_;
|
|
};
|
|
|
|
/*!
|
|
* \brief used instead of GradStats to have float instead of double to reduce histograms
|
|
* this improves performance by 10-30% and memory consumption for histograms by 2x
|
|
* accuracy in both cases is the same
|
|
*/
|
|
struct GradStatHist {
|
|
typedef float GradType;
|
|
/*! \brief sum gradient statistics */
|
|
GradType sum_grad;
|
|
/*! \brief sum hessian statistics */
|
|
GradType sum_hess;
|
|
|
|
GradStatHist() : sum_grad{0}, sum_hess{0} {
|
|
static_assert(sizeof(GradStatHist) == 8,
|
|
"Size of GradStatHist is not 8 bytes.");
|
|
}
|
|
|
|
inline void Add(const GradStatHist& b) {
|
|
sum_grad += b.sum_grad;
|
|
sum_hess += b.sum_hess;
|
|
}
|
|
|
|
inline void Add(const tree::GradStats& b) {
|
|
sum_grad += b.sum_grad;
|
|
sum_hess += b.sum_hess;
|
|
}
|
|
|
|
inline void Add(const GradientPair& p) {
|
|
this->Add(p.GetGrad(), p.GetHess());
|
|
}
|
|
|
|
inline void Add(const GradType& grad, const GradType& hess) {
|
|
sum_grad += grad;
|
|
sum_hess += hess;
|
|
}
|
|
|
|
inline tree::GradStats ToGradStat() const {
|
|
return tree::GradStats(sum_grad, sum_hess);
|
|
}
|
|
|
|
inline void SetSubstract(const GradStatHist& a, const GradStatHist& b) {
|
|
sum_grad = a.sum_grad - b.sum_grad;
|
|
sum_hess = a.sum_hess - b.sum_hess;
|
|
}
|
|
|
|
inline void SetSubstract(const tree::GradStats& a, const GradStatHist& b) {
|
|
sum_grad = a.sum_grad - b.sum_grad;
|
|
sum_hess = a.sum_hess - b.sum_hess;
|
|
}
|
|
|
|
inline GradType GetGrad() const { return sum_grad; }
|
|
inline GradType GetHess() const { return sum_hess; }
|
|
inline static void Reduce(GradStatHist& a, const GradStatHist& b) { // NOLINT(*)
|
|
a.Add(b);
|
|
}
|
|
};
|
|
|
|
using GHistRow = Span<GradStatHist>;
|
|
|
|
/*!
|
|
* \brief histogram of gradient statistics for multiple nodes
|
|
*/
|
|
class HistCollection {
|
|
public:
|
|
// access histogram for i-th node
|
|
inline GHistRow operator[](bst_uint nid) {
|
|
AddHistRow(nid);
|
|
return { const_cast<GradStatHist*>(dmlc::BeginPtr(data_arr_[nid])), nbins_};
|
|
}
|
|
|
|
// have we computed a histogram for i-th node?
|
|
inline bool RowExists(bst_uint nid) const {
|
|
return nid < data_arr_.size();
|
|
}
|
|
|
|
// initialize histogram collection
|
|
inline void Init(uint32_t nbins) {
|
|
if (nbins_ != nbins) {
|
|
data_arr_.clear();
|
|
nbins_ = nbins;
|
|
}
|
|
}
|
|
|
|
// create an empty histogram for i-th node
|
|
inline void AddHistRow(bst_uint nid) {
|
|
if (data_arr_.size() <= nid) {
|
|
size_t prev = data_arr_.size();
|
|
data_arr_.resize(nid + 1);
|
|
|
|
for (size_t i = prev; i < data_arr_.size(); ++i) {
|
|
data_arr_[i].resize(nbins_);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_ = 0;
|
|
std::vector<std::vector<GradStatHist>> data_arr_;
|
|
};
|
|
|
|
|
|
/*!
|
|
* \brief builder for histograms of gradient statistics
|
|
*/
|
|
class GHistBuilder {
|
|
public:
|
|
// initialize builder
|
|
inline void Init(size_t nthread, uint32_t nbins) {
|
|
nthread_ = nthread;
|
|
nbins_ = nbins;
|
|
}
|
|
|
|
void BuildBlockHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexBlockMatrix& gmatb,
|
|
GHistRow hist) {
|
|
constexpr int kUnroll = 8; // loop unrolling factor
|
|
const int32_t nblock = gmatb.GetNumBlock();
|
|
const size_t nrows = row_indices.end - row_indices.begin;
|
|
const size_t rest = nrows % kUnroll;
|
|
|
|
#pragma omp parallel for
|
|
for (int32_t bid = 0; bid < nblock; ++bid) {
|
|
auto gmat = gmatb[bid];
|
|
|
|
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
|
|
size_t rid[kUnroll];
|
|
size_t ibegin[kUnroll];
|
|
size_t iend[kUnroll];
|
|
GradientPair stat[kUnroll];
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
rid[k] = row_indices.begin[i + k];
|
|
}
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
ibegin[k] = gmat.row_ptr[rid[k]];
|
|
iend[k] = gmat.row_ptr[rid[k] + 1];
|
|
}
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
stat[k] = gpair[rid[k]];
|
|
}
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
|
|
const uint32_t bin = gmat.index[j];
|
|
hist[bin].Add(stat[k]);
|
|
}
|
|
}
|
|
}
|
|
for (size_t i = nrows - rest; i < nrows; ++i) {
|
|
const size_t rid = row_indices.begin[i];
|
|
const size_t ibegin = gmat.row_ptr[rid];
|
|
const size_t iend = gmat.row_ptr[rid + 1];
|
|
const GradientPair stat = gpair[rid];
|
|
for (size_t j = ibegin; j < iend; ++j) {
|
|
const uint32_t bin = gmat.index[j];
|
|
hist[bin].Add(stat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t GetNumBins() {
|
|
return nbins_;
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of threads for parallel computation */
|
|
size_t nthread_;
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_;
|
|
};
|
|
|
|
|
|
void BuildHistLocalDense(size_t istart, size_t iend, size_t nrows, const size_t* rid,
|
|
const uint32_t* index, const GradientPair::ValueT* pgh, const size_t* row_ptr,
|
|
GradStatHist::GradType* data_local_hist, GradStatHist* grad_stat);
|
|
|
|
void BuildHistLocalSparse(size_t istart, size_t iend, size_t nrows, const size_t* rid,
|
|
const uint32_t* index, const GradientPair::ValueT* pgh, const size_t* row_ptr,
|
|
GradStatHist::GradType* data_local_hist, GradStatHist* grad_stat);
|
|
|
|
void SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent);
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_HIST_UTIL_H_
|