xgboost/R-package/tests/testthat/test_custom_objective.R

181 lines
5.1 KiB
R

context('Test models with custom objective')
set.seed(1994)
n_threads <- 2
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
dtrain <- xgb.DMatrix(
agaricus.train$data, label = agaricus.train$label, nthread = n_threads
)
dtest <- xgb.DMatrix(
agaricus.test$data, label = agaricus.test$label, nthread = n_threads
)
evals <- list(eval = dtest, train = dtrain)
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
preds <- 1 / (1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0.5))) / length(labels)
return(list(metric = "error", value = err))
}
param <- list(max_depth = 2, eta = 1, nthread = n_threads,
objective = logregobj, eval_metric = evalerror)
num_round <- 2
test_that("custom objective works", {
bst <- xgb.train(param, dtrain, num_round, evals)
expect_equal(class(bst), "xgb.Booster")
expect_false(is.null(attributes(bst)$evaluation_log))
expect_false(is.null(attributes(bst)$evaluation_log$eval_error))
expect_lt(attributes(bst)$evaluation_log[num_round, eval_error], 0.03)
})
test_that("custom objective in CV works", {
cv <- xgb.cv(param, dtrain, num_round, nfold = 10, verbose = FALSE)
expect_false(is.null(cv$evaluation_log))
expect_equal(dim(cv$evaluation_log), c(2, 5))
expect_lt(cv$evaluation_log[num_round, test_error_mean], 0.03)
})
test_that("custom objective with early stop works", {
bst <- xgb.train(param, dtrain, 10, evals)
expect_equal(class(bst), "xgb.Booster")
train_log <- attributes(bst)$evaluation_log$train_error
expect_true(all(diff(train_log) <= 0))
})
test_that("custom objective using DMatrix attr works", {
attr(dtrain, 'label') <- getinfo(dtrain, 'label')
logregobjattr <- function(preds, dtrain) {
labels <- attr(dtrain, 'label')
preds <- 1 / (1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
param$objective <- logregobjattr
bst <- xgb.train(param, dtrain, num_round, evals)
expect_equal(class(bst), "xgb.Booster")
})
test_that("custom objective with multi-class shape", {
data <- as.matrix(iris[, -5])
label <- as.numeric(iris$Species) - 1
dtrain <- xgb.DMatrix(data = data, label = label, nthread = n_threads)
n_classes <- 3
fake_softprob <- function(preds, dtrain) {
expect_true(all(matrix(preds) == 0.5))
## use numeric vector here to test compatibility with XGBoost < 2.1
grad <- rnorm(length(as.matrix(preds)))
expect_equal(dim(data)[1] * n_classes, dim(as.matrix(preds))[1] * n_classes)
hess <- rnorm(length(as.matrix(preds)))
return(list(grad = grad, hess = hess))
}
fake_merror <- function(preds, dtrain) {
expect_equal(dim(data)[1] * n_classes, dim(as.matrix(preds))[1])
}
param$objective <- fake_softprob
param$eval_metric <- fake_merror
bst <- xgb.train(param, dtrain, 1, num_class = n_classes)
})
softmax <- function(values) {
values <- as.numeric(values)
exps <- exp(values)
den <- sum(exps)
return(exps / den)
}
softprob <- function(predt, dtrain) {
y <- getinfo(dtrain, "label")
n_samples <- dim(predt)[1]
n_classes <- dim(predt)[2]
grad <- matrix(nrow = n_samples, ncol = n_classes)
hess <- matrix(nrow = n_samples, ncol = n_classes)
for (i in seq_len(n_samples)) {
t <- y[i]
p <- softmax(predt[i, ])
for (c in seq_len(n_classes)) {
g <- if (c - 1 == t) {
p[c] - 1.0
} else {
p[c]
}
h <- max((2.0 * p[c] * (1.0 - p[c])), 1e-6)
grad[i, c] <- g
hess[i, c] <- h
}
}
return(list(grad = grad, hess = hess))
}
test_that("custom objective with multi-class works", {
data <- as.matrix(iris[, -5])
label <- as.numeric(iris$Species) - 1
dtrain <- xgb.DMatrix(data = data, label = label)
param$num_class <- 3
param$objective <- softprob
param$eval_metric <- "merror"
param$base_score <- 0.5
custom_bst <- xgb.train(param, dtrain, 2)
custom_predt <- predict(custom_bst, dtrain)
param$objective <- "multi:softmax"
builtin_bst <- xgb.train(param, dtrain, 2)
builtin_predt <- predict(builtin_bst, dtrain)
expect_equal(custom_predt, builtin_predt)
})
test_that("custom metric with multi-target passes reshaped data to feval", {
x <- as.matrix(iris[, -5])
y <- as.numeric(iris$Species) - 1
dtrain <- xgb.DMatrix(data = x, label = y)
multinomial.ll <- function(predt, dtrain) {
expect_equal(dim(predt), c(nrow(iris), 3L))
y <- getinfo(dtrain, "label")
probs <- apply(predt, 1, softmax) |> t()
probs.y <- probs[cbind(seq(1L, nrow(predt)), y + 1L)]
ll <- sum(log(probs.y))
return(list(metric = "multinomial-ll", value = -ll))
}
model <- xgb.train(
params = list(
objective = "multi:softmax",
num_class = 3L,
base_score = 0,
disable_default_eval_metric = TRUE,
max_depth = 123,
seed = 123
),
data = dtrain,
nrounds = 2L,
evals = list(Train = dtrain),
eval_metric = multinomial.ll,
verbose = 0
)
})