54 lines
2.1 KiB
R
54 lines
2.1 KiB
R
require(xgboost)
|
|
require(data.table)
|
|
require(Matrix)
|
|
|
|
set.seed(1982)
|
|
|
|
# load in the agaricus dataset
|
|
data(agaricus.train, package='xgboost')
|
|
data(agaricus.test, package='xgboost')
|
|
dtrain <- xgb.DMatrix(data = agaricus.train$data, label = agaricus.train$label)
|
|
dtest <- xgb.DMatrix(data = agaricus.test$data, label = agaricus.test$label)
|
|
|
|
param <- list(max_depth=2, eta=1, objective='binary:logistic')
|
|
nrounds = 4
|
|
|
|
# training the model for two rounds
|
|
bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
|
|
|
|
# Model accuracy without new features
|
|
accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) / length(agaricus.test$label)
|
|
|
|
# by default, we predict using all the trees
|
|
|
|
pred_with_leaf = predict(bst, dtest, predleaf = TRUE)
|
|
head(pred_with_leaf)
|
|
|
|
create.new.tree.features <- function(model, original.features){
|
|
pred_with_leaf <- predict(model, original.features, predleaf = TRUE)
|
|
cols <- list()
|
|
for(i in 1:model$niter){
|
|
# max is not the real max but it s not important for the purpose of adding features
|
|
leaf.id <- sort(unique(pred_with_leaf[,i]))
|
|
cols[[i]] <- factor(x = pred_with_leaf[,i], level = leaf.id)
|
|
}
|
|
cbind(original.features, sparse.model.matrix( ~ . -1, as.data.frame(cols)))
|
|
}
|
|
|
|
# Convert previous features to one hot encoding
|
|
new.features.train <- create.new.tree.features(bst, agaricus.train$data)
|
|
new.features.test <- create.new.tree.features(bst, agaricus.test$data)
|
|
colnames(new.features.test) <- colnames(new.features.train)
|
|
|
|
# learning with new features
|
|
new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label)
|
|
new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label)
|
|
watchlist <- list(train = new.dtrain)
|
|
bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
|
|
|
|
# Model accuracy with new features
|
|
accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) / length(agaricus.test$label)
|
|
|
|
# Here the accuracy was already good and is now perfect.
|
|
cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now", accuracy.after, "!\n"))
|