xgboost/R-package/R/xgb.importance.R
2014-12-30 00:12:01 +01:00

67 lines
2.9 KiB
R

#' Show importance of features in a model
#'
#' Read a xgboost model in text file format.
#' Can be tree or linear model (text dump of linear model are only supported in dev version of Xgboost for now).
#'
#' Return a data.table of the features with their weight.
#' #'
#' @importFrom data.table data.table
#' @importFrom magrittr %>%
#' @importFrom data.table :=
#' @importFrom stringr str_extract
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
#' @param filename_dump the path to the text file storing the model.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
#' train <- agaricus.train
#' test <- agaricus.test
#'
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
#' eta = 1, nround = 2,objective = "binary:logistic")
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
#'
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
#' xgb.importance(agaricus.test$data@@Dimnames[[2]], 'xgb.model.dump')
#'
#' @export
xgb.importance <- function(feature_names = NULL, filename_dump = NULL){
if (!class(feature_names) %in% c("character", "NULL")) {
stop("feature_names: Has to be a vector of character or NULL if the model dump already contains feature name. Look at this function documentation to see where to get feature names.")
}
if (class(filename_dump) != "character" & file.exists(filename_dump)) {
stop("filename_dump: Has to be a path to the model dump file.")
}
text <- readLines(filename_dump)
if(text[2] == "bias:"){
result <- linearDump(feature_names, text)
} else {
result <- treeDump(feature_names, text)
}
result
}
treeDump <- function(feature_names, text){
featureVec <- c()
gainVec <- c()
for(line in text){
p <- str_extract(line, "\\[f.*<")
if (!is.na(p)) {
featureVec <- substr(p, 3, nchar(p)-1) %>% c(featureVec)
gainVec <- str_extract(line, "gain.*,") %>% substr(x = ., 6, nchar(.)-1) %>% as.numeric %>% c(gainVec)
}
}
if(!is.null(feature_names)) {
featureVec %<>% as.numeric %>% {c =.+1; feature_names[c]} #+1 because in R indexing start with 1 instead of 0.
}
#1. Reduce, 2. %, 3. reorder - bigger top, 4. remove temp col
data.table(Feature = featureVec, Weight = gainVec)[,sum(Weight), by = Feature][, Weight:= V1 /sum(V1)][order(-rank(Weight))][,-2,with=F]
}
linearDump <- function(feature_names, text){
which(text == "weight:") %>% {a=.+1;text[a:length(text)]} %>% as.numeric %>% data.table(Feature = feature_names, Weight = .)
}