67 lines
2.9 KiB
R
67 lines
2.9 KiB
R
#' Show importance of features in a model
|
|
#'
|
|
#' Read a xgboost model in text file format.
|
|
#' Can be tree or linear model (text dump of linear model are only supported in dev version of Xgboost for now).
|
|
#'
|
|
#' Return a data.table of the features with their weight.
|
|
#' #'
|
|
#' @importFrom data.table data.table
|
|
#' @importFrom magrittr %>%
|
|
#' @importFrom data.table :=
|
|
#' @importFrom stringr str_extract
|
|
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
|
#' @param filename_dump the path to the text file storing the model.
|
|
#'
|
|
#' @examples
|
|
#' data(agaricus.train, package='xgboost')
|
|
#' data(agaricus.test, package='xgboost')
|
|
#'
|
|
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
|
|
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
|
#' train <- agaricus.train
|
|
#' test <- agaricus.test
|
|
#'
|
|
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
|
#' eta = 1, nround = 2,objective = "binary:logistic")
|
|
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
|
#'
|
|
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
|
#' xgb.importance(agaricus.test$data@@Dimnames[[2]], 'xgb.model.dump')
|
|
#'
|
|
#' @export
|
|
xgb.importance <- function(feature_names = NULL, filename_dump = NULL){
|
|
if (!class(feature_names) %in% c("character", "NULL")) {
|
|
stop("feature_names: Has to be a vector of character or NULL if the model dump already contains feature name. Look at this function documentation to see where to get feature names.")
|
|
}
|
|
if (class(filename_dump) != "character" & file.exists(filename_dump)) {
|
|
stop("filename_dump: Has to be a path to the model dump file.")
|
|
}
|
|
text <- readLines(filename_dump)
|
|
if(text[2] == "bias:"){
|
|
result <- linearDump(feature_names, text)
|
|
} else {
|
|
result <- treeDump(feature_names, text)
|
|
}
|
|
result
|
|
}
|
|
|
|
treeDump <- function(feature_names, text){
|
|
featureVec <- c()
|
|
gainVec <- c()
|
|
for(line in text){
|
|
p <- str_extract(line, "\\[f.*<")
|
|
if (!is.na(p)) {
|
|
featureVec <- substr(p, 3, nchar(p)-1) %>% c(featureVec)
|
|
gainVec <- str_extract(line, "gain.*,") %>% substr(x = ., 6, nchar(.)-1) %>% as.numeric %>% c(gainVec)
|
|
}
|
|
}
|
|
if(!is.null(feature_names)) {
|
|
featureVec %<>% as.numeric %>% {c =.+1; feature_names[c]} #+1 because in R indexing start with 1 instead of 0.
|
|
}
|
|
#1. Reduce, 2. %, 3. reorder - bigger top, 4. remove temp col
|
|
data.table(Feature = featureVec, Weight = gainVec)[,sum(Weight), by = Feature][, Weight:= V1 /sum(V1)][order(-rank(Weight))][,-2,with=F]
|
|
}
|
|
|
|
linearDump <- function(feature_names, text){
|
|
which(text == "weight:") %>% {a=.+1;text[a:length(text)]} %>% as.numeric %>% data.table(Feature = feature_names, Weight = .)
|
|
} |