xgboost/plugin/sycl/tree/hist_updater.cc
Dmitry Razdoburdin 7720272870
[sycl] add split applications and tests (#10636)
Co-authored-by: Dmitry Razdoburdin <>
2024-07-26 15:25:49 +08:00

524 lines
20 KiB
C++

/*!
* Copyright 2017-2024 by Contributors
* \file hist_updater.cc
*/
#include "hist_updater.h"
#include <oneapi/dpl/random>
#include <functional>
#include "../../src/tree/common_row_partitioner.h"
#include "../common/hist_util.h"
#include "../../src/collective/allreduce.h"
namespace xgboost {
namespace sycl {
namespace tree {
using ::sycl::ext::oneapi::plus;
using ::sycl::ext::oneapi::minimum;
using ::sycl::ext::oneapi::maximum;
template <typename GradientSumT>
void HistUpdater<GradientSumT>::SetHistSynchronizer(
HistSynchronizer<GradientSumT> *sync) {
hist_synchronizer_.reset(sync);
}
template <typename GradientSumT>
void HistUpdater<GradientSumT>::SetHistRowsAdder(
HistRowsAdder<GradientSumT> *adder) {
hist_rows_adder_.reset(adder);
}
template <typename GradientSumT>
void HistUpdater<GradientSumT>::BuildHistogramsLossGuide(
ExpandEntry entry,
const common::GHistIndexMatrix &gmat,
RegTree *p_tree,
const USMVector<GradientPair, MemoryType::on_device> &gpair_device) {
nodes_for_explicit_hist_build_.clear();
nodes_for_subtraction_trick_.clear();
nodes_for_explicit_hist_build_.push_back(entry);
if (!(*p_tree)[entry.nid].IsRoot()) {
auto sibling_id = entry.GetSiblingId(p_tree);
nodes_for_subtraction_trick_.emplace_back(sibling_id, p_tree->GetDepth(sibling_id));
}
std::vector<int> sync_ids;
hist_rows_adder_->AddHistRows(this, &sync_ids, p_tree);
qu_.wait_and_throw();
BuildLocalHistograms(gmat, p_tree, gpair_device);
hist_synchronizer_->SyncHistograms(this, sync_ids, p_tree);
}
template<typename GradientSumT>
void HistUpdater<GradientSumT>::BuildLocalHistograms(
const common::GHistIndexMatrix &gmat,
RegTree *p_tree,
const USMVector<GradientPair, MemoryType::on_device> &gpair_device) {
builder_monitor_.Start("BuildLocalHistograms");
const size_t n_nodes = nodes_for_explicit_hist_build_.size();
::sycl::event event;
for (size_t i = 0; i < n_nodes; i++) {
const int32_t nid = nodes_for_explicit_hist_build_[i].nid;
if (row_set_collection_[nid].Size() > 0) {
event = BuildHist(gpair_device, row_set_collection_[nid], gmat, &(hist_[nid]),
&(hist_buffer_.GetDeviceBuffer()), event);
} else {
common::InitHist(qu_, &(hist_[nid]), hist_[nid].Size(), &event);
}
}
qu_.wait_and_throw();
builder_monitor_.Stop("BuildLocalHistograms");
}
template<typename GradientSumT>
void HistUpdater<GradientSumT>::InitSampling(
const USMVector<GradientPair, MemoryType::on_device> &gpair,
USMVector<size_t, MemoryType::on_device>* row_indices) {
const size_t num_rows = row_indices->Size();
auto* row_idx = row_indices->Data();
const auto* gpair_ptr = gpair.DataConst();
uint64_t num_samples = 0;
const auto subsample = param_.subsample;
::sycl::event event;
{
::sycl::buffer<uint64_t, 1> flag_buf(&num_samples, 1);
uint64_t seed = seed_;
seed_ += num_rows;
event = qu_.submit([&](::sycl::handler& cgh) {
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(num_rows)),
[=](::sycl::item<1> pid) {
uint64_t i = pid.get_id(0);
// Create minstd_rand engine
oneapi::dpl::minstd_rand engine(seed, i);
oneapi::dpl::bernoulli_distribution coin_flip(subsample);
auto rnd = coin_flip(engine);
if (gpair_ptr[i].GetHess() >= 0.0f && rnd) {
AtomicRef<uint64_t> num_samples_ref(flag_buf_acc[0]);
row_idx[num_samples_ref++] = i;
}
});
});
/* After calling a destructor for flag_buf, content will be copyed to num_samples */
}
row_indices->Resize(&qu_, num_samples, 0, &event);
qu_.wait();
}
template<typename GradientSumT>
void HistUpdater<GradientSumT>::InitData(
const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair, MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree) {
CHECK((param_.max_depth > 0 || param_.max_leaves > 0))
<< "max_depth or max_leaves cannot be both 0 (unlimited); "
<< "at least one should be a positive quantity.";
if (param_.grow_policy == xgboost::tree::TrainParam::kDepthWise) {
CHECK(param_.max_depth > 0) << "max_depth cannot be 0 (unlimited) "
<< "when grow_policy is depthwise.";
}
builder_monitor_.Start("InitData");
const auto& info = fmat.Info();
if (!column_sampler_) {
column_sampler_ = xgboost::common::MakeColumnSampler(ctx_);
}
// initialize the row set
{
row_set_collection_.Clear();
// initialize histogram collection
uint32_t nbins = gmat.cut.Ptrs().back();
hist_.Init(qu_, nbins);
hist_buffer_.Init(qu_, nbins);
size_t buffer_size = kBufferSize;
hist_buffer_.Reset(kBufferSize);
// initialize histogram builder
hist_builder_ = common::GHistBuilder<GradientSumT>(qu_, nbins);
USMVector<size_t, MemoryType::on_device>* row_indices = &(row_set_collection_.Data());
row_indices->Resize(&qu_, info.num_row_);
size_t* p_row_indices = row_indices->Data();
// mark subsample and build list of member rows
if (param_.subsample < 1.0f) {
CHECK_EQ(param_.sampling_method, xgboost::tree::TrainParam::kUniform)
<< "Only uniform sampling is supported, "
<< "gradient-based sampling is only support by GPU Hist.";
InitSampling(gpair, row_indices);
} else {
int has_neg_hess = 0;
const GradientPair* gpair_ptr = gpair.DataConst();
::sycl::event event;
{
::sycl::buffer<int, 1> flag_buf(&has_neg_hess, 1);
event = qu_.submit([&](::sycl::handler& cgh) {
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(info.num_row_)),
[=](::sycl::item<1> pid) {
const size_t idx = pid.get_id(0);
p_row_indices[idx] = idx;
if (gpair_ptr[idx].GetHess() < 0.0f) {
AtomicRef<int> has_neg_hess_ref(flag_buf_acc[0]);
has_neg_hess_ref.fetch_max(1);
}
});
});
}
if (has_neg_hess) {
size_t max_idx = 0;
{
::sycl::buffer<size_t, 1> flag_buf(&max_idx, 1);
event = qu_.submit([&](::sycl::handler& cgh) {
cgh.depends_on(event);
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(info.num_row_)),
[=](::sycl::item<1> pid) {
const size_t idx = pid.get_id(0);
if (gpair_ptr[idx].GetHess() >= 0.0f) {
AtomicRef<size_t> max_idx_ref(flag_buf_acc[0]);
p_row_indices[max_idx_ref++] = idx;
}
});
});
}
row_indices->Resize(&qu_, max_idx, 0, &event);
}
qu_.wait_and_throw();
}
}
row_set_collection_.Init();
{
/* determine layout of data */
const size_t nrow = info.num_row_;
const size_t ncol = info.num_col_;
const size_t nnz = info.num_nonzero_;
// number of discrete bins for feature 0
const uint32_t nbins_f0 = gmat.cut.Ptrs()[1] - gmat.cut.Ptrs()[0];
if (nrow * ncol == nnz) {
// dense data with zero-based indexing
data_layout_ = kDenseDataZeroBased;
} else if (nbins_f0 == 0 && nrow * (ncol - 1) == nnz) {
// dense data with one-based indexing
data_layout_ = kDenseDataOneBased;
} else {
// sparse data
data_layout_ = kSparseData;
}
}
column_sampler_->Init(ctx_, info.num_col_, info.feature_weights.ConstHostVector(),
param_.colsample_bynode, param_.colsample_bylevel,
param_.colsample_bytree);
if (data_layout_ == kDenseDataZeroBased || data_layout_ == kDenseDataOneBased) {
/* specialized code for dense data:
choose the column that has a least positive number of discrete bins.
For dense data (with no missing value),
the sum of gradient histogram is equal to snode[nid] */
const std::vector<uint32_t>& row_ptr = gmat.cut.Ptrs();
const auto nfeature = static_cast<bst_uint>(row_ptr.size() - 1);
uint32_t min_nbins_per_feature = 0;
for (bst_uint i = 0; i < nfeature; ++i) {
const uint32_t nbins = row_ptr[i + 1] - row_ptr[i];
if (nbins > 0) {
if (min_nbins_per_feature == 0 || min_nbins_per_feature > nbins) {
min_nbins_per_feature = nbins;
fid_least_bins_ = i;
}
}
}
CHECK_GT(min_nbins_per_feature, 0U);
}
std::fill(snode_host_.begin(), snode_host_.end(), NodeEntry<GradientSumT>(param_));
builder_monitor_.Stop("InitData");
}
template <typename GradientSumT>
void HistUpdater<GradientSumT>::AddSplitsToRowSet(
const std::vector<ExpandEntry>& nodes,
RegTree* p_tree) {
const size_t n_nodes = nodes.size();
for (size_t i = 0; i < n_nodes; ++i) {
const int32_t nid = nodes[i].nid;
const size_t n_left = partition_builder_.GetNLeftElems(i);
const size_t n_right = partition_builder_.GetNRightElems(i);
row_set_collection_.AddSplit(nid, (*p_tree)[nid].LeftChild(),
(*p_tree)[nid].RightChild(), n_left, n_right);
}
}
template <typename GradientSumT>
void HistUpdater<GradientSumT>::ApplySplit(
const std::vector<ExpandEntry> nodes,
const common::GHistIndexMatrix& gmat,
RegTree* p_tree) {
using CommonRowPartitioner = xgboost::tree::CommonRowPartitioner;
builder_monitor_.Start("ApplySplit");
const size_t n_nodes = nodes.size();
std::vector<int32_t> split_conditions(n_nodes);
CommonRowPartitioner::FindSplitConditions(nodes, *p_tree, gmat, &split_conditions);
partition_builder_.Init(&qu_, n_nodes, [&](size_t node_in_set) {
const int32_t nid = nodes[node_in_set].nid;
return row_set_collection_[nid].Size();
});
::sycl::event event;
partition_builder_.Partition(gmat, nodes, row_set_collection_,
split_conditions, p_tree, &event);
qu_.wait_and_throw();
for (size_t node_in_set = 0; node_in_set < n_nodes; node_in_set++) {
const int32_t nid = nodes[node_in_set].nid;
size_t* data_result = const_cast<size_t*>(row_set_collection_[nid].begin);
partition_builder_.MergeToArray(node_in_set, data_result, &event);
}
qu_.wait_and_throw();
AddSplitsToRowSet(nodes, p_tree);
builder_monitor_.Stop("ApplySplit");
}
template <typename GradientSumT>
void HistUpdater<GradientSumT>::InitNewNode(int nid,
const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair,
MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree) {
builder_monitor_.Start("InitNewNode");
snode_host_.resize(tree.NumNodes(), NodeEntry<GradientSumT>(param_));
{
if (tree[nid].IsRoot()) {
GradStats<GradientSumT> grad_stat;
if (data_layout_ == kDenseDataZeroBased || data_layout_ == kDenseDataOneBased) {
const std::vector<uint32_t>& row_ptr = gmat.cut.Ptrs();
const uint32_t ibegin = row_ptr[fid_least_bins_];
const uint32_t iend = row_ptr[fid_least_bins_ + 1];
const auto* hist = reinterpret_cast<GradStats<GradientSumT>*>(hist_[nid].Data());
std::vector<GradStats<GradientSumT>> ets(iend - ibegin);
qu_.memcpy(ets.data(), hist + ibegin,
(iend - ibegin) * sizeof(GradStats<GradientSumT>)).wait_and_throw();
for (const auto& et : ets) {
grad_stat += et;
}
} else {
const common::RowSetCollection::Elem e = row_set_collection_[nid];
const size_t* row_idxs = e.begin;
const size_t size = e.Size();
const GradientPair* gpair_ptr = gpair.DataConst();
::sycl::buffer<GradStats<GradientSumT>> buff(&grad_stat, 1);
qu_.submit([&](::sycl::handler& cgh) {
auto reduction = ::sycl::reduction(buff, cgh, ::sycl::plus<>());
cgh.parallel_for<>(::sycl::range<1>(size), reduction,
[=](::sycl::item<1> pid, auto& sum) {
size_t i = pid.get_id(0);
size_t row_idx = row_idxs[i];
if constexpr (std::is_same<GradientPair::ValueT, GradientSumT>::value) {
sum += gpair_ptr[row_idx];
} else {
sum += GradStats<GradientSumT>(gpair_ptr[row_idx].GetGrad(),
gpair_ptr[row_idx].GetHess());
}
});
}).wait_and_throw();
}
auto rc = collective::Allreduce(
ctx_, linalg::MakeVec(reinterpret_cast<GradientSumT*>(&grad_stat), 2),
collective::Op::kSum);
SafeColl(rc);
snode_host_[nid].stats = grad_stat;
} else {
int parent_id = tree[nid].Parent();
if (tree[nid].IsLeftChild()) {
snode_host_[nid].stats = snode_host_[parent_id].best.left_sum;
} else {
snode_host_[nid].stats = snode_host_[parent_id].best.right_sum;
}
}
}
// calculating the weights
{
auto evaluator = tree_evaluator_.GetEvaluator();
bst_uint parentid = tree[nid].Parent();
snode_host_[nid].weight = evaluator.CalcWeight(parentid, snode_host_[nid].stats);
snode_host_[nid].root_gain = evaluator.CalcGain(parentid, snode_host_[nid].stats);
}
builder_monitor_.Stop("InitNewNode");
}
// nodes_set - set of nodes to be processed in parallel
template<typename GradientSumT>
void HistUpdater<GradientSumT>::EvaluateSplits(
const std::vector<ExpandEntry>& nodes_set,
const common::GHistIndexMatrix& gmat,
const RegTree& tree) {
builder_monitor_.Start("EvaluateSplits");
const size_t n_nodes_in_set = nodes_set.size();
using FeatureSetType = std::shared_ptr<HostDeviceVector<bst_feature_t>>;
// Generate feature set for each tree node
size_t pos = 0;
for (size_t nid_in_set = 0; nid_in_set < n_nodes_in_set; ++nid_in_set) {
const bst_node_t nid = nodes_set[nid_in_set].nid;
FeatureSetType features_set = column_sampler_->GetFeatureSet(tree.GetDepth(nid));
for (size_t idx = 0; idx < features_set->Size(); idx++) {
const size_t fid = features_set->ConstHostVector()[idx];
if (interaction_constraints_.Query(nid, fid)) {
auto this_hist = hist_[nid].DataConst();
if (pos < split_queries_host_.size()) {
split_queries_host_[pos] = SplitQuery{nid, fid, this_hist};
} else {
split_queries_host_.push_back({nid, fid, this_hist});
}
++pos;
}
}
}
const size_t total_features = pos;
split_queries_device_.Resize(&qu_, total_features);
auto event = qu_.memcpy(split_queries_device_.Data(), split_queries_host_.data(),
total_features * sizeof(SplitQuery));
auto evaluator = tree_evaluator_.GetEvaluator();
SplitQuery* split_queries_device = split_queries_device_.Data();
const uint32_t* cut_ptr = gmat.cut_device.Ptrs().DataConst();
const bst_float* cut_val = gmat.cut_device.Values().DataConst();
const bst_float* cut_minval = gmat.cut_device.MinValues().DataConst();
snode_device_.ResizeNoCopy(&qu_, snode_host_.size());
event = qu_.memcpy(snode_device_.Data(), snode_host_.data(),
snode_host_.size() * sizeof(NodeEntry<GradientSumT>), event);
const NodeEntry<GradientSumT>* snode = snode_device_.Data();
const float min_child_weight = param_.min_child_weight;
best_splits_device_.ResizeNoCopy(&qu_, total_features);
if (best_splits_host_.size() < total_features) best_splits_host_.resize(total_features);
SplitEntry<GradientSumT>* best_splits = best_splits_device_.Data();
event = qu_.submit([&](::sycl::handler& cgh) {
cgh.depends_on(event);
cgh.parallel_for<>(::sycl::nd_range<2>(::sycl::range<2>(total_features, sub_group_size_),
::sycl::range<2>(1, sub_group_size_)),
[=](::sycl::nd_item<2> pid) {
int i = pid.get_global_id(0);
auto sg = pid.get_sub_group();
int nid = split_queries_device[i].nid;
int fid = split_queries_device[i].fid;
const GradientPairT* hist_data = split_queries_device[i].hist;
best_splits[i] = snode[nid].best;
EnumerateSplit(sg, cut_ptr, cut_val, hist_data, snode[nid],
&(best_splits[i]), fid, nid, evaluator, min_child_weight);
});
});
event = qu_.memcpy(best_splits_host_.data(), best_splits,
total_features * sizeof(SplitEntry<GradientSumT>), event);
qu_.wait();
for (size_t i = 0; i < total_features; i++) {
int nid = split_queries_host_[i].nid;
snode_host_[nid].best.Update(best_splits_host_[i]);
}
builder_monitor_.Stop("EvaluateSplits");
}
// Enumerate the split values of specific feature.
// Returns the sum of gradients corresponding to the data points that contains a non-missing value
// for the particular feature fid.
template <typename GradientSumT>
void HistUpdater<GradientSumT>::EnumerateSplit(
const ::sycl::sub_group& sg,
const uint32_t* cut_ptr,
const bst_float* cut_val,
const GradientPairT* hist_data,
const NodeEntry<GradientSumT>& snode,
SplitEntry<GradientSumT>* p_best,
bst_uint fid,
bst_uint nodeID,
typename TreeEvaluator<GradientSumT>::SplitEvaluator const &evaluator,
float min_child_weight) {
SplitEntry<GradientSumT> best;
int32_t ibegin = static_cast<int32_t>(cut_ptr[fid]);
int32_t iend = static_cast<int32_t>(cut_ptr[fid + 1]);
GradStats<GradientSumT> sum(0, 0);
int32_t sub_group_size = sg.get_local_range().size();
const size_t local_id = sg.get_local_id()[0];
/* TODO(razdoburdin)
* Currently the first additions are fast and the last are slow.
* Maybe calculating of reduce overgroup in seprate kernel and reusing it here can be faster
*/
for (int32_t i = ibegin + local_id; i < iend; i += sub_group_size) {
sum.Add(::sycl::inclusive_scan_over_group(sg, hist_data[i].GetGrad(), std::plus<>()),
::sycl::inclusive_scan_over_group(sg, hist_data[i].GetHess(), std::plus<>()));
if (sum.GetHess() >= min_child_weight) {
GradStats<GradientSumT> c = snode.stats - sum;
if (c.GetHess() >= min_child_weight) {
bst_float loss_chg = evaluator.CalcSplitGain(nodeID, fid, sum, c) - snode.root_gain;
bst_float split_pt = cut_val[i];
best.Update(loss_chg, fid, split_pt, false, sum, c);
}
}
const bool last_iter = i + sub_group_size >= iend;
if (!last_iter) {
size_t end = i - local_id + sub_group_size;
if (end > iend) end = iend;
for (size_t j = i + 1; j < end; ++j) {
sum.Add(hist_data[j].GetGrad(), hist_data[j].GetHess());
}
}
}
bst_float total_loss_chg = ::sycl::reduce_over_group(sg, best.loss_chg, maximum<>());
bst_feature_t total_split_index = ::sycl::reduce_over_group(sg,
best.loss_chg == total_loss_chg ?
best.SplitIndex() :
(1U << 31) - 1U, minimum<>());
if (best.loss_chg == total_loss_chg &&
best.SplitIndex() == total_split_index) p_best->Update(best);
}
template class HistUpdater<float>;
template class HistUpdater<double>;
} // namespace tree
} // namespace sycl
} // namespace xgboost