xgboost/tests/python/test_with_dask.py
Jiaming Yuan 761e938dbe
Support dask dataframe as y for classifier. (#5077)
* Support dask dataframe as y for classifier.

* Lint.
2019-12-02 11:53:30 +08:00

125 lines
3.4 KiB
Python

import testing as tm
import pytest
import xgboost as xgb
import sys
import numpy as np
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
pytestmark = pytest.mark.skipif(**tm.no_dask())
try:
from distributed.utils_test import client, loop, cluster_fixture
import dask.dataframe as dd
import dask.array as da
from xgboost.dask import DaskDMatrix
except ImportError:
client = None
loop = None
cluster_fixture = None
pass
kRows = 1000
kCols = 10
def generate_array():
partition_size = 20
X = da.random.random((kRows, kCols), partition_size)
y = da.random.random(kRows, partition_size)
return X, y
def test_from_dask_dataframe(client):
X, y = generate_array()
X = dd.from_dask_array(X)
y = dd.from_dask_array(y)
dtrain = DaskDMatrix(client, X, y)
booster = xgb.dask.train(
client, {}, dtrain, num_boost_round=2)['booster']
prediction = xgb.dask.predict(client, model=booster, data=dtrain)
assert prediction.ndim == 1
assert isinstance(prediction, da.Array)
assert prediction.shape[0] == kRows
with pytest.raises(ValueError):
# evals_result is not supported in dask interface.
xgb.dask.train(
client, {}, dtrain, num_boost_round=2, evals_result={})
prediction = prediction.compute() # force prediction to be computed
def test_from_dask_array(client):
X, y = generate_array()
dtrain = DaskDMatrix(client, X, y)
# results is {'booster': Booster, 'history': {...}}
result = xgb.dask.train(client, {}, dtrain)
prediction = xgb.dask.predict(client, result, dtrain)
assert prediction.shape[0] == kRows
assert isinstance(prediction, da.Array)
prediction = prediction.compute() # force prediction to be computed
def test_regressor(client):
X, y = generate_array()
regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
regressor.set_params(tree_method='hist')
regressor.client = client
regressor.fit(X, y, eval_set=[(X, y)])
prediction = regressor.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = regressor.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history['validation_0'].keys())[0] == 'rmse'
assert len(history['validation_0']['rmse']) == 2
def test_classifier(client):
X, y = generate_array()
y = (y * 10).astype(np.int32)
classifier = xgb.dask.DaskXGBClassifier(verbosity=1, n_estimators=2)
classifier.client = client
classifier.fit(X, y, eval_set=[(X, y)])
prediction = classifier.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = classifier.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history.keys())[0] == 'validation_0'
assert list(history['validation_0'].keys())[0] == 'merror'
assert len(list(history['validation_0'])) == 1
assert len(history['validation_0']['merror']) == 2
assert classifier.n_classes_ == 10
# Test with dataframe.
X_d = dd.from_dask_array(X)
y_d = dd.from_dask_array(y)
classifier.fit(X_d, y_d)
assert classifier.n_classes_ == 10
prediction = classifier.predict(X_d)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows