59e63bc minor 6233050 ok 14477f9 add namenode 75a6d34 add libhdfs opts e3c76bf minmum fix 8b3c435 chg 2035799 test code 7751b2b add debug 7690313 ok bd346b4 ok faba1dc add testload 6f7783e add testload e5f0340 ok 3ed9ec8 chg e552ac4 ask for more ram in am b2505e3 only stop nm when sucess bc696c9 add queue info f3e867e add option queue 5dc843c refactor fileio cd9c81b quick fix 1e23af2 add virtual destructor to iseekstream f165ffb fix hdfs 8cc6508 allow demo to pass in env fad4d69 ok 0fd6197 fix more 7423837 fix more d25de54 add temporal solution, run_yarn_prog.py e5a9e31 final attempt ed3bee8 add command back 0774000 add hdfs to resource 9b66e7e fix hadoop 6812f14 ok 08e1c16 change hadoop prefix back to hadoop home d6b6828 Update build.sh 146e069 bugfix: logical boundary for ring buffer 19cb685 ok 4cf3c13 Merge branch 'master' of ssh://github.com/tqchen/rabit 20daddb add tracker c57dad8 add ringbased passing and batch schedule 295d8a1 update 994cb02 add sge 014c866 OK git-subtree-dir: subtree/rabit git-subtree-split: 59e63bc1354c9ff516d72d9a6468f6c431627202
135 lines
3.9 KiB
C++
135 lines
3.9 KiB
C++
/*!
|
|
* Copyright (c) 2015 by Contributors
|
|
* \file linear.h
|
|
* \brief Linear and Logistic regression
|
|
*
|
|
* \author Tianqi Chen
|
|
*/
|
|
#ifndef RABIT_LINEAR_H_
|
|
#define RABIT_LINEAR_H_
|
|
#include <omp.h>
|
|
#include "../utils/data.h"
|
|
#include "../solver/lbfgs.h"
|
|
|
|
namespace rabit {
|
|
namespace linear {
|
|
/*! \brief simple linear model */
|
|
struct LinearModel {
|
|
struct ModelParam {
|
|
/*! \brief global bias */
|
|
float base_score;
|
|
/*! \brief number of features */
|
|
size_t num_feature;
|
|
/*! \brief loss type*/
|
|
int loss_type;
|
|
// reserved field
|
|
int reserved[16];
|
|
// constructor
|
|
ModelParam(void) {
|
|
memset(this, 0, sizeof(ModelParam));
|
|
base_score = 0.5f;
|
|
num_feature = 0;
|
|
loss_type = 1;
|
|
num_feature = 0;
|
|
}
|
|
// initialize base score
|
|
inline void InitBaseScore(void) {
|
|
utils::Check(base_score > 0.0f && base_score < 1.0f,
|
|
"base_score must be in (0,1) for logistic loss");
|
|
base_score = -std::log(1.0f / base_score - 1.0f);
|
|
}
|
|
/*!
|
|
* \brief set parameters from outside
|
|
* \param name name of the parameter
|
|
* \param val value of the parameter
|
|
*/
|
|
inline void SetParam(const char *name, const char *val) {
|
|
using namespace std;
|
|
if (!strcmp("base_score", name)) {
|
|
base_score = static_cast<float>(atof(val));
|
|
}
|
|
if (!strcmp("num_feature", name)) {
|
|
num_feature = static_cast<size_t>(atol(val));
|
|
}
|
|
if (!strcmp("objective", name)) {
|
|
if (!strcmp("linear", val)) {
|
|
loss_type = 0;
|
|
} else if (!strcmp("logistic", val)) {
|
|
loss_type = 1;
|
|
} else {
|
|
utils::Error("unknown objective type %s\n", val);
|
|
}
|
|
}
|
|
}
|
|
// transform margin to prediction
|
|
inline float MarginToPred(float margin) const {
|
|
if (loss_type == 1) {
|
|
return 1.0f / (1.0f + std::exp(-margin));
|
|
} else {
|
|
return margin;
|
|
}
|
|
}
|
|
// margin to loss
|
|
inline float MarginToLoss(float label, float margin) const {
|
|
if (loss_type == 1) {
|
|
float nlogprob;
|
|
if (margin > 0.0f) {
|
|
nlogprob = std::log(1.0f + std::exp(-margin));
|
|
} else {
|
|
nlogprob = -margin + std::log(1.0f + std::exp(margin));
|
|
}
|
|
return label * nlogprob +
|
|
(1.0f -label) * (margin + nlogprob);
|
|
} else {
|
|
float diff = margin - label;
|
|
return 0.5f * diff * diff;
|
|
}
|
|
}
|
|
inline float PredToGrad(float label, float pred) const {
|
|
return pred - label;
|
|
}
|
|
inline float PredictMargin(const float *weight,
|
|
const SparseMat::Vector &v) const {
|
|
// weight[num_feature] is bias
|
|
float sum = base_score + weight[num_feature];
|
|
for (unsigned i = 0; i < v.length; ++i) {
|
|
if (v[i].findex >= num_feature) continue;
|
|
sum += weight[v[i].findex] * v[i].fvalue;
|
|
}
|
|
return sum;
|
|
}
|
|
inline float Predict(const float *weight,
|
|
const SparseMat::Vector &v) const {
|
|
return MarginToPred(PredictMargin(weight, v));
|
|
}
|
|
};
|
|
// model parameter
|
|
ModelParam param;
|
|
// weight corresponding to the model
|
|
float *weight;
|
|
LinearModel(void) : weight(NULL) {
|
|
}
|
|
~LinearModel(void) {
|
|
if (weight != NULL) delete [] weight;
|
|
}
|
|
// load model
|
|
inline void Load(rabit::IStream &fi) {
|
|
fi.Read(¶m, sizeof(param));
|
|
if (weight == NULL) {
|
|
weight = new float[param.num_feature + 1];
|
|
}
|
|
fi.Read(weight, sizeof(float) * (param.num_feature + 1));
|
|
}
|
|
inline void Save(rabit::IStream &fo, const float *wptr = NULL) {
|
|
fo.Write(¶m, sizeof(param));
|
|
if (wptr == NULL) wptr = weight;
|
|
fo.Write(wptr, sizeof(float) * (param.num_feature + 1));
|
|
}
|
|
inline float Predict(const SparseMat::Vector &v) const {
|
|
return param.Predict(weight, v);
|
|
}
|
|
};
|
|
} // namespace linear
|
|
} // namespace rabit
|
|
#endif // RABIT_LINEAR_H_
|