659 lines
21 KiB
C++
659 lines
21 KiB
C++
/*!
|
|
* Copyright 2014-2019 by Contributors
|
|
* \file tree_model.h
|
|
* \brief model structure for tree
|
|
* \author Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_TREE_MODEL_H_
|
|
#define XGBOOST_TREE_MODEL_H_
|
|
|
|
#include <dmlc/io.h>
|
|
#include <dmlc/parameter.h>
|
|
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/feature_map.h>
|
|
#include <xgboost/model.h>
|
|
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cstring>
|
|
#include <algorithm>
|
|
#include <tuple>
|
|
#include <stack>
|
|
|
|
namespace xgboost {
|
|
|
|
struct PathElement; // forward declaration
|
|
|
|
class Json;
|
|
// FIXME(trivialfis): Once binary IO is gone, make this parameter internal as it should
|
|
// not be configured by users.
|
|
/*! \brief meta parameters of the tree */
|
|
struct TreeParam : public dmlc::Parameter<TreeParam> {
|
|
/*! \brief (Deprecated) number of start root */
|
|
int deprecated_num_roots;
|
|
/*! \brief total number of nodes */
|
|
int num_nodes;
|
|
/*!\brief number of deleted nodes */
|
|
int num_deleted;
|
|
/*! \brief maximum depth, this is a statistics of the tree */
|
|
int deprecated_max_depth;
|
|
/*! \brief number of features used for tree construction */
|
|
int num_feature;
|
|
/*!
|
|
* \brief leaf vector size, used for vector tree
|
|
* used to store more than one dimensional information in tree
|
|
*/
|
|
int size_leaf_vector;
|
|
/*! \brief reserved part, make sure alignment works for 64bit */
|
|
int reserved[31];
|
|
/*! \brief constructor */
|
|
TreeParam() {
|
|
// assert compact alignment
|
|
static_assert(sizeof(TreeParam) == (31 + 6) * sizeof(int),
|
|
"TreeParam: 64 bit align");
|
|
std::memset(this, 0, sizeof(TreeParam));
|
|
num_nodes = 1;
|
|
deprecated_num_roots = 1;
|
|
}
|
|
// declare the parameters
|
|
DMLC_DECLARE_PARAMETER(TreeParam) {
|
|
// only declare the parameters that can be set by the user.
|
|
// other arguments are set by the algorithm.
|
|
DMLC_DECLARE_FIELD(num_nodes).set_lower_bound(1).set_default(1);
|
|
DMLC_DECLARE_FIELD(num_feature)
|
|
.describe("Number of features used in tree construction.");
|
|
DMLC_DECLARE_FIELD(num_deleted);
|
|
DMLC_DECLARE_FIELD(size_leaf_vector).set_lower_bound(0).set_default(0)
|
|
.describe("Size of leaf vector, reserved for vector tree");
|
|
}
|
|
|
|
bool operator==(const TreeParam& b) const {
|
|
return num_nodes == b.num_nodes &&
|
|
num_deleted == b.num_deleted &&
|
|
num_feature == b.num_feature &&
|
|
size_leaf_vector == b.size_leaf_vector;
|
|
}
|
|
};
|
|
|
|
/*! \brief node statistics used in regression tree */
|
|
struct RTreeNodeStat {
|
|
/*! \brief loss change caused by current split */
|
|
bst_float loss_chg;
|
|
/*! \brief sum of hessian values, used to measure coverage of data */
|
|
bst_float sum_hess;
|
|
/*! \brief weight of current node */
|
|
bst_float base_weight;
|
|
/*! \brief number of child that is leaf node known up to now */
|
|
int leaf_child_cnt {0};
|
|
|
|
RTreeNodeStat() = default;
|
|
RTreeNodeStat(float loss_chg, float sum_hess, float weight) :
|
|
loss_chg{loss_chg}, sum_hess{sum_hess}, base_weight{weight} {}
|
|
bool operator==(const RTreeNodeStat& b) const {
|
|
return loss_chg == b.loss_chg && sum_hess == b.sum_hess &&
|
|
base_weight == b.base_weight && leaf_child_cnt == b.leaf_child_cnt;
|
|
}
|
|
};
|
|
|
|
/*!
|
|
* \brief define regression tree to be the most common tree model.
|
|
* This is the data structure used in xgboost's major tree models.
|
|
*/
|
|
class RegTree : public Model {
|
|
public:
|
|
using SplitCondT = bst_float;
|
|
static constexpr bst_node_t kInvalidNodeId {-1};
|
|
static constexpr uint32_t kDeletedNodeMarker = std::numeric_limits<uint32_t>::max();
|
|
static constexpr bst_node_t kRoot { 0 };
|
|
|
|
/*! \brief tree node */
|
|
class Node {
|
|
public:
|
|
XGBOOST_DEVICE Node() {
|
|
// assert compact alignment
|
|
static_assert(sizeof(Node) == 4 * sizeof(int) + sizeof(Info),
|
|
"Node: 64 bit align");
|
|
}
|
|
Node(int32_t cleft, int32_t cright, int32_t parent,
|
|
uint32_t split_ind, float split_cond, bool default_left) :
|
|
parent_{parent}, cleft_{cleft}, cright_{cright} {
|
|
this->SetParent(parent_);
|
|
this->SetSplit(split_ind, split_cond, default_left);
|
|
}
|
|
|
|
/*! \brief index of left child */
|
|
XGBOOST_DEVICE int LeftChild() const {
|
|
return this->cleft_;
|
|
}
|
|
/*! \brief index of right child */
|
|
XGBOOST_DEVICE int RightChild() const {
|
|
return this->cright_;
|
|
}
|
|
/*! \brief index of default child when feature is missing */
|
|
XGBOOST_DEVICE int DefaultChild() const {
|
|
return this->DefaultLeft() ? this->LeftChild() : this->RightChild();
|
|
}
|
|
/*! \brief feature index of split condition */
|
|
XGBOOST_DEVICE unsigned SplitIndex() const {
|
|
return sindex_ & ((1U << 31) - 1U);
|
|
}
|
|
/*! \brief when feature is unknown, whether goes to left child */
|
|
XGBOOST_DEVICE bool DefaultLeft() const {
|
|
return (sindex_ >> 31) != 0;
|
|
}
|
|
/*! \brief whether current node is leaf node */
|
|
XGBOOST_DEVICE bool IsLeaf() const {
|
|
return cleft_ == kInvalidNodeId;
|
|
}
|
|
/*! \return get leaf value of leaf node */
|
|
XGBOOST_DEVICE bst_float LeafValue() const {
|
|
return (this->info_).leaf_value;
|
|
}
|
|
/*! \return get split condition of the node */
|
|
XGBOOST_DEVICE SplitCondT SplitCond() const {
|
|
return (this->info_).split_cond;
|
|
}
|
|
/*! \brief get parent of the node */
|
|
XGBOOST_DEVICE int Parent() const {
|
|
return parent_ & ((1U << 31) - 1);
|
|
}
|
|
/*! \brief whether current node is left child */
|
|
XGBOOST_DEVICE bool IsLeftChild() const {
|
|
return (parent_ & (1U << 31)) != 0;
|
|
}
|
|
/*! \brief whether this node is deleted */
|
|
XGBOOST_DEVICE bool IsDeleted() const {
|
|
return sindex_ == kDeletedNodeMarker;
|
|
}
|
|
/*! \brief whether current node is root */
|
|
XGBOOST_DEVICE bool IsRoot() const { return parent_ == kInvalidNodeId; }
|
|
/*!
|
|
* \brief set the left child
|
|
* \param nid node id to right child
|
|
*/
|
|
XGBOOST_DEVICE void SetLeftChild(int nid) {
|
|
this->cleft_ = nid;
|
|
}
|
|
/*!
|
|
* \brief set the right child
|
|
* \param nid node id to right child
|
|
*/
|
|
XGBOOST_DEVICE void SetRightChild(int nid) {
|
|
this->cright_ = nid;
|
|
}
|
|
/*!
|
|
* \brief set split condition of current node
|
|
* \param split_index feature index to split
|
|
* \param split_cond split condition
|
|
* \param default_left the default direction when feature is unknown
|
|
*/
|
|
XGBOOST_DEVICE void SetSplit(unsigned split_index, SplitCondT split_cond,
|
|
bool default_left = false) {
|
|
if (default_left) split_index |= (1U << 31);
|
|
this->sindex_ = split_index;
|
|
(this->info_).split_cond = split_cond;
|
|
}
|
|
/*!
|
|
* \brief set the leaf value of the node
|
|
* \param value leaf value
|
|
* \param right right index, could be used to store
|
|
* additional information
|
|
*/
|
|
XGBOOST_DEVICE void SetLeaf(bst_float value, int right = kInvalidNodeId) {
|
|
(this->info_).leaf_value = value;
|
|
this->cleft_ = kInvalidNodeId;
|
|
this->cright_ = right;
|
|
}
|
|
/*! \brief mark that this node is deleted */
|
|
XGBOOST_DEVICE void MarkDelete() {
|
|
this->sindex_ = kDeletedNodeMarker;
|
|
}
|
|
/*! \brief Reuse this deleted node. */
|
|
XGBOOST_DEVICE void Reuse() {
|
|
this->sindex_ = 0;
|
|
}
|
|
// set parent
|
|
XGBOOST_DEVICE void SetParent(int pidx, bool is_left_child = true) {
|
|
if (is_left_child) pidx |= (1U << 31);
|
|
this->parent_ = pidx;
|
|
}
|
|
bool operator==(const Node& b) const {
|
|
return parent_ == b.parent_ && cleft_ == b.cleft_ &&
|
|
cright_ == b.cright_ && sindex_ == b.sindex_ &&
|
|
info_.leaf_value == b.info_.leaf_value;
|
|
}
|
|
|
|
private:
|
|
/*!
|
|
* \brief in leaf node, we have weights, in non-leaf nodes,
|
|
* we have split condition
|
|
*/
|
|
union Info{
|
|
bst_float leaf_value;
|
|
SplitCondT split_cond;
|
|
};
|
|
// pointer to parent, highest bit is used to
|
|
// indicate whether it's a left child or not
|
|
int32_t parent_{kInvalidNodeId};
|
|
// pointer to left, right
|
|
int32_t cleft_{kInvalidNodeId}, cright_{kInvalidNodeId};
|
|
// split feature index, left split or right split depends on the highest bit
|
|
uint32_t sindex_{0};
|
|
// extra info
|
|
Info info_;
|
|
};
|
|
|
|
/*!
|
|
* \brief change a non leaf node to a leaf node, delete its children
|
|
* \param rid node id of the node
|
|
* \param value new leaf value
|
|
*/
|
|
void ChangeToLeaf(int rid, bst_float value) {
|
|
CHECK(nodes_[nodes_[rid].LeftChild() ].IsLeaf());
|
|
CHECK(nodes_[nodes_[rid].RightChild()].IsLeaf());
|
|
this->DeleteNode(nodes_[rid].LeftChild());
|
|
this->DeleteNode(nodes_[rid].RightChild());
|
|
nodes_[rid].SetLeaf(value);
|
|
}
|
|
/*!
|
|
* \brief collapse a non leaf node to a leaf node, delete its children
|
|
* \param rid node id of the node
|
|
* \param value new leaf value
|
|
*/
|
|
void CollapseToLeaf(int rid, bst_float value) {
|
|
if (nodes_[rid].IsLeaf()) return;
|
|
if (!nodes_[nodes_[rid].LeftChild() ].IsLeaf()) {
|
|
CollapseToLeaf(nodes_[rid].LeftChild(), 0.0f);
|
|
}
|
|
if (!nodes_[nodes_[rid].RightChild() ].IsLeaf()) {
|
|
CollapseToLeaf(nodes_[rid].RightChild(), 0.0f);
|
|
}
|
|
this->ChangeToLeaf(rid, value);
|
|
}
|
|
|
|
/*! \brief model parameter */
|
|
TreeParam param;
|
|
/*! \brief constructor */
|
|
RegTree() {
|
|
param.num_nodes = 1;
|
|
param.num_deleted = 0;
|
|
nodes_.resize(param.num_nodes);
|
|
stats_.resize(param.num_nodes);
|
|
for (int i = 0; i < param.num_nodes; i ++) {
|
|
nodes_[i].SetLeaf(0.0f);
|
|
nodes_[i].SetParent(kInvalidNodeId);
|
|
}
|
|
}
|
|
/*! \brief get node given nid */
|
|
Node& operator[](int nid) {
|
|
return nodes_[nid];
|
|
}
|
|
/*! \brief get node given nid */
|
|
const Node& operator[](int nid) const {
|
|
return nodes_[nid];
|
|
}
|
|
|
|
/*! \brief get const reference to nodes */
|
|
const std::vector<Node>& GetNodes() const { return nodes_; }
|
|
|
|
/*! \brief get node statistics given nid */
|
|
RTreeNodeStat& Stat(int nid) {
|
|
return stats_[nid];
|
|
}
|
|
/*! \brief get node statistics given nid */
|
|
const RTreeNodeStat& Stat(int nid) const {
|
|
return stats_[nid];
|
|
}
|
|
|
|
/*!
|
|
* \brief load model from stream
|
|
* \param fi input stream
|
|
*/
|
|
void Load(dmlc::Stream* fi);
|
|
/*!
|
|
* \brief save model to stream
|
|
* \param fo output stream
|
|
*/
|
|
void Save(dmlc::Stream* fo) const;
|
|
|
|
void LoadModel(Json const& in) override;
|
|
void SaveModel(Json* out) const override;
|
|
|
|
bool operator==(const RegTree& b) const {
|
|
return nodes_ == b.nodes_ && stats_ == b.stats_ &&
|
|
deleted_nodes_ == b.deleted_nodes_ && param == b.param;
|
|
}
|
|
/* \brief Iterate through all nodes in this tree.
|
|
*
|
|
* \param Function that accepts a node index, and returns false when iteration should
|
|
* stop, otherwise returns true.
|
|
*/
|
|
template <typename Func> void WalkTree(Func func) const {
|
|
std::stack<bst_node_t> nodes;
|
|
nodes.push(kRoot);
|
|
auto &self = *this;
|
|
while (!nodes.empty()) {
|
|
auto nidx = nodes.top();
|
|
nodes.pop();
|
|
if (!func(nidx)) {
|
|
return;
|
|
}
|
|
auto left = self[nidx].LeftChild();
|
|
auto right = self[nidx].RightChild();
|
|
if (left != RegTree::kInvalidNodeId) {
|
|
nodes.push(left);
|
|
}
|
|
if (right != RegTree::kInvalidNodeId) {
|
|
nodes.push(right);
|
|
}
|
|
}
|
|
}
|
|
/*!
|
|
* \brief Compares whether 2 trees are equal from a user's perspective. The equality
|
|
* compares only non-deleted nodes.
|
|
*
|
|
* \parm b The other tree.
|
|
*/
|
|
bool Equal(const RegTree& b) const;
|
|
|
|
/**
|
|
* \brief Expands a leaf node into two additional leaf nodes.
|
|
*
|
|
* \param nid The node index to expand.
|
|
* \param split_index Feature index of the split.
|
|
* \param split_value The split condition.
|
|
* \param default_left True to default left.
|
|
* \param base_weight The base weight, before learning rate.
|
|
* \param left_leaf_weight The left leaf weight for prediction, modified by learning rate.
|
|
* \param right_leaf_weight The right leaf weight for prediction, modified by learning rate.
|
|
* \param loss_change The loss change.
|
|
* \param sum_hess The sum hess.
|
|
* \param left_sum The sum hess of left leaf.
|
|
* \param right_sum The sum hess of right leaf.
|
|
* \param leaf_right_child The right child index of leaf, by default kInvalidNodeId,
|
|
* some updaters use the right child index of leaf as a marker
|
|
*/
|
|
void ExpandNode(int nid, unsigned split_index, bst_float split_value,
|
|
bool default_left, bst_float base_weight,
|
|
bst_float left_leaf_weight, bst_float right_leaf_weight,
|
|
bst_float loss_change, float sum_hess, float left_sum,
|
|
float right_sum,
|
|
bst_node_t leaf_right_child = kInvalidNodeId) {
|
|
int pleft = this->AllocNode();
|
|
int pright = this->AllocNode();
|
|
auto &node = nodes_[nid];
|
|
CHECK(node.IsLeaf());
|
|
node.SetLeftChild(pleft);
|
|
node.SetRightChild(pright);
|
|
nodes_[node.LeftChild()].SetParent(nid, true);
|
|
nodes_[node.RightChild()].SetParent(nid, false);
|
|
node.SetSplit(split_index, split_value,
|
|
default_left);
|
|
|
|
nodes_[pleft].SetLeaf(left_leaf_weight, leaf_right_child);
|
|
nodes_[pright].SetLeaf(right_leaf_weight, leaf_right_child);
|
|
|
|
this->Stat(nid) = {loss_change, sum_hess, base_weight};
|
|
this->Stat(pleft) = {0.0f, left_sum, left_leaf_weight};
|
|
this->Stat(pright) = {0.0f, right_sum, right_leaf_weight};
|
|
}
|
|
|
|
/*!
|
|
* \brief get current depth
|
|
* \param nid node id
|
|
*/
|
|
int GetDepth(int nid) const {
|
|
int depth = 0;
|
|
while (!nodes_[nid].IsRoot()) {
|
|
++depth;
|
|
nid = nodes_[nid].Parent();
|
|
}
|
|
return depth;
|
|
}
|
|
/*!
|
|
* \brief get maximum depth
|
|
* \param nid node id
|
|
*/
|
|
int MaxDepth(int nid) const {
|
|
if (nodes_[nid].IsLeaf()) return 0;
|
|
return std::max(MaxDepth(nodes_[nid].LeftChild())+1,
|
|
MaxDepth(nodes_[nid].RightChild())+1);
|
|
}
|
|
|
|
/*!
|
|
* \brief get maximum depth
|
|
*/
|
|
int MaxDepth() {
|
|
return MaxDepth(0);
|
|
}
|
|
|
|
/*! \brief number of extra nodes besides the root */
|
|
int NumExtraNodes() const {
|
|
return param.num_nodes - 1 - param.num_deleted;
|
|
}
|
|
|
|
/* \brief Count number of leaves in tree. */
|
|
bst_node_t GetNumLeaves() const;
|
|
bst_node_t GetNumSplitNodes() const;
|
|
|
|
/*!
|
|
* \brief dense feature vector that can be taken by RegTree
|
|
* and can be construct from sparse feature vector.
|
|
*/
|
|
struct FVec {
|
|
/*!
|
|
* \brief initialize the vector with size vector
|
|
* \param size The size of the feature vector.
|
|
*/
|
|
void Init(size_t size);
|
|
/*!
|
|
* \brief fill the vector with sparse vector
|
|
* \param inst The sparse instance to fill.
|
|
*/
|
|
void Fill(const SparsePage::Inst& inst);
|
|
/*!
|
|
* \brief drop the trace after fill, must be called after fill.
|
|
* \param inst The sparse instance to drop.
|
|
*/
|
|
void Drop(const SparsePage::Inst& inst);
|
|
/*!
|
|
* \brief returns the size of the feature vector
|
|
* \return the size of the feature vector
|
|
*/
|
|
size_t Size() const;
|
|
/*!
|
|
* \brief get ith value
|
|
* \param i feature index.
|
|
* \return the i-th feature value
|
|
*/
|
|
bst_float GetFvalue(size_t i) const;
|
|
/*!
|
|
* \brief check whether i-th entry is missing
|
|
* \param i feature index.
|
|
* \return whether i-th value is missing.
|
|
*/
|
|
bool IsMissing(size_t i) const;
|
|
|
|
private:
|
|
/*!
|
|
* \brief a union value of value and flag
|
|
* when flag == -1, this indicate the value is missing
|
|
*/
|
|
union Entry {
|
|
bst_float fvalue;
|
|
int flag;
|
|
};
|
|
std::vector<Entry> data_;
|
|
};
|
|
/*!
|
|
* \brief get the leaf index
|
|
* \param feat dense feature vector, if the feature is missing the field is set to NaN
|
|
* \return the leaf index of the given feature
|
|
*/
|
|
int GetLeafIndex(const FVec& feat) const;
|
|
/*!
|
|
* \brief calculate the feature contributions (https://arxiv.org/abs/1706.06060) for the tree
|
|
* \param feat dense feature vector, if the feature is missing the field is set to NaN
|
|
* \param out_contribs output vector to hold the contributions
|
|
* \param condition fix one feature to either off (-1) on (1) or not fixed (0 default)
|
|
* \param condition_feature the index of the feature to fix
|
|
*/
|
|
void CalculateContributions(const RegTree::FVec& feat,
|
|
bst_float* out_contribs, int condition = 0,
|
|
unsigned condition_feature = 0) const;
|
|
/*!
|
|
* \brief Recursive function that computes the feature attributions for a single tree.
|
|
* \param feat dense feature vector, if the feature is missing the field is set to NaN
|
|
* \param phi dense output vector of feature attributions
|
|
* \param node_index the index of the current node in the tree
|
|
* \param unique_depth how many unique features are above the current node in the tree
|
|
* \param parent_unique_path a vector of statistics about our current path through the tree
|
|
* \param parent_zero_fraction what fraction of the parent path weight is coming as 0 (integrated)
|
|
* \param parent_one_fraction what fraction of the parent path weight is coming as 1 (fixed)
|
|
* \param parent_feature_index what feature the parent node used to split
|
|
* \param condition fix one feature to either off (-1) on (1) or not fixed (0 default)
|
|
* \param condition_feature the index of the feature to fix
|
|
* \param condition_fraction what fraction of the current weight matches our conditioning feature
|
|
*/
|
|
void TreeShap(const RegTree::FVec& feat, bst_float* phi, unsigned node_index,
|
|
unsigned unique_depth, PathElement* parent_unique_path,
|
|
bst_float parent_zero_fraction, bst_float parent_one_fraction,
|
|
int parent_feature_index, int condition,
|
|
unsigned condition_feature, bst_float condition_fraction) const;
|
|
|
|
/*!
|
|
* \brief calculate the approximate feature contributions for the given root
|
|
* \param feat dense feature vector, if the feature is missing the field is set to NaN
|
|
* \param out_contribs output vector to hold the contributions
|
|
*/
|
|
void CalculateContributionsApprox(const RegTree::FVec& feat,
|
|
bst_float* out_contribs) const;
|
|
/*!
|
|
* \brief get next position of the tree given current pid
|
|
* \param pid Current node id.
|
|
* \param fvalue feature value if not missing.
|
|
* \param is_unknown Whether current required feature is missing.
|
|
*/
|
|
inline int GetNext(int pid, bst_float fvalue, bool is_unknown) const;
|
|
/*!
|
|
* \brief dump the model in the requested format as a text string
|
|
* \param fmap feature map that may help give interpretations of feature
|
|
* \param with_stats whether dump out statistics as well
|
|
* \param format the format to dump the model in
|
|
* \return the string of dumped model
|
|
*/
|
|
std::string DumpModel(const FeatureMap& fmap,
|
|
bool with_stats,
|
|
std::string format) const;
|
|
/*!
|
|
* \brief calculate the mean value for each node, required for feature contributions
|
|
*/
|
|
void FillNodeMeanValues();
|
|
|
|
private:
|
|
// vector of nodes
|
|
std::vector<Node> nodes_;
|
|
// free node space, used during training process
|
|
std::vector<int> deleted_nodes_;
|
|
// stats of nodes
|
|
std::vector<RTreeNodeStat> stats_;
|
|
std::vector<bst_float> node_mean_values_;
|
|
// allocate a new node,
|
|
// !!!!!! NOTE: may cause BUG here, nodes.resize
|
|
int AllocNode() {
|
|
if (param.num_deleted != 0) {
|
|
int nid = deleted_nodes_.back();
|
|
deleted_nodes_.pop_back();
|
|
nodes_[nid].Reuse();
|
|
--param.num_deleted;
|
|
return nid;
|
|
}
|
|
int nd = param.num_nodes++;
|
|
CHECK_LT(param.num_nodes, std::numeric_limits<int>::max())
|
|
<< "number of nodes in the tree exceed 2^31";
|
|
nodes_.resize(param.num_nodes);
|
|
stats_.resize(param.num_nodes);
|
|
return nd;
|
|
}
|
|
// delete a tree node, keep the parent field to allow trace back
|
|
void DeleteNode(int nid) {
|
|
CHECK_GE(nid, 1);
|
|
auto pid = (*this)[nid].Parent();
|
|
if (nid == (*this)[pid].LeftChild()) {
|
|
(*this)[pid].SetLeftChild(kInvalidNodeId);
|
|
} else {
|
|
(*this)[pid].SetRightChild(kInvalidNodeId);
|
|
}
|
|
|
|
deleted_nodes_.push_back(nid);
|
|
nodes_[nid].MarkDelete();
|
|
++param.num_deleted;
|
|
}
|
|
bst_float FillNodeMeanValue(int nid);
|
|
};
|
|
|
|
inline void RegTree::FVec::Init(size_t size) {
|
|
Entry e; e.flag = -1;
|
|
data_.resize(size);
|
|
std::fill(data_.begin(), data_.end(), e);
|
|
}
|
|
|
|
inline void RegTree::FVec::Fill(const SparsePage::Inst& inst) {
|
|
for (auto const& entry : inst) {
|
|
if (entry.index >= data_.size()) {
|
|
continue;
|
|
}
|
|
data_[entry.index].fvalue = entry.fvalue;
|
|
}
|
|
}
|
|
|
|
inline void RegTree::FVec::Drop(const SparsePage::Inst& inst) {
|
|
for (auto const& entry : inst) {
|
|
if (entry.index >= data_.size()) {
|
|
continue;
|
|
}
|
|
data_[entry.index].flag = -1;
|
|
}
|
|
}
|
|
|
|
inline size_t RegTree::FVec::Size() const {
|
|
return data_.size();
|
|
}
|
|
|
|
inline bst_float RegTree::FVec::GetFvalue(size_t i) const {
|
|
return data_[i].fvalue;
|
|
}
|
|
|
|
inline bool RegTree::FVec::IsMissing(size_t i) const {
|
|
return data_[i].flag == -1;
|
|
}
|
|
|
|
inline int RegTree::GetLeafIndex(const RegTree::FVec& feat) const {
|
|
bst_node_t nid = 0;
|
|
while (!(*this)[nid].IsLeaf()) {
|
|
unsigned split_index = (*this)[nid].SplitIndex();
|
|
nid = this->GetNext(nid, feat.GetFvalue(split_index), feat.IsMissing(split_index));
|
|
}
|
|
return nid;
|
|
}
|
|
|
|
/*! \brief get next position of the tree given current pid */
|
|
inline int RegTree::GetNext(int pid, bst_float fvalue, bool is_unknown) const {
|
|
bst_float split_value = (*this)[pid].SplitCond();
|
|
if (is_unknown) {
|
|
return (*this)[pid].DefaultChild();
|
|
} else {
|
|
if (fvalue < split_value) {
|
|
return (*this)[pid].LeftChild();
|
|
} else {
|
|
return (*this)[pid].RightChild();
|
|
}
|
|
}
|
|
}
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_TREE_MODEL_H_
|