* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage. - added distributions to HostDeviceVector - using HostDeviceVector for labels, weights and base margings in MetaInfo - using HostDeviceVector for offset and data in SparsePage - other necessary refactoring * Added const version of HostDeviceVector API calls. - const versions added to calls that can trigger data transfers, e.g. DevicePointer() - updated the code that uses HostDeviceVector - objective functions now accept const HostDeviceVector<bst_float>& for predictions * Updated src/linear/updater_gpu_coordinate.cu. * Added read-only state for HostDeviceVector sync. - this means no copies are performed if both host and devices access the HostDeviceVector read-only * Fixed linter and test errors. - updated the lz4 plugin - added ConstDeviceSpan to HostDeviceVector - using device % dh::NVisibleDevices() for the physical device number, e.g. in calls to cudaSetDevice() * Fixed explicit template instantiation errors for HostDeviceVector. - replaced HostDeviceVector<unsigned int> with HostDeviceVector<int> * Fixed HostDeviceVector tests that require multiple GPUs. - added a mock set device handler; when set, it is called instead of cudaSetDevice()
142 lines
4.7 KiB
C++
142 lines
4.7 KiB
C++
/*!
|
|
* Copyright 2015 by Contributors
|
|
* \file multi_class.cc
|
|
* \brief Definition of multi-class classification objectives.
|
|
* \author Tianqi Chen
|
|
*/
|
|
#include <dmlc/omp.h>
|
|
#include <dmlc/parameter.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/objective.h>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include "../common/math.h"
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(multiclass_obj);
|
|
|
|
struct SoftmaxMultiClassParam : public dmlc::Parameter<SoftmaxMultiClassParam> {
|
|
int num_class;
|
|
// declare parameters
|
|
DMLC_DECLARE_PARAMETER(SoftmaxMultiClassParam) {
|
|
DMLC_DECLARE_FIELD(num_class).set_lower_bound(1)
|
|
.describe("Number of output class in the multi-class classification.");
|
|
}
|
|
};
|
|
|
|
class SoftmaxMultiClassObj : public ObjFunction {
|
|
public:
|
|
explicit SoftmaxMultiClassObj(bool output_prob)
|
|
: output_prob_(output_prob) {
|
|
}
|
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.InitAllowUnknown(args);
|
|
}
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo& info,
|
|
int iter,
|
|
HostDeviceVector<GradientPair>* out_gpair) override {
|
|
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
|
CHECK(preds.Size() == (static_cast<size_t>(param_.num_class) * info.labels_.Size()))
|
|
<< "SoftmaxMultiClassObj: label size and pred size does not match";
|
|
const std::vector<bst_float>& preds_h = preds.HostVector();
|
|
out_gpair->Resize(preds_h.size());
|
|
std::vector<GradientPair>& gpair = out_gpair->HostVector();
|
|
const int nclass = param_.num_class;
|
|
const auto ndata = static_cast<omp_ulong>(preds_h.size() / nclass);
|
|
|
|
const auto& labels = info.labels_.HostVector();
|
|
int label_error = 0;
|
|
#pragma omp parallel
|
|
{
|
|
std::vector<bst_float> rec(nclass);
|
|
#pragma omp for schedule(static)
|
|
for (omp_ulong i = 0; i < ndata; ++i) {
|
|
for (int k = 0; k < nclass; ++k) {
|
|
rec[k] = preds_h[i * nclass + k];
|
|
}
|
|
common::Softmax(&rec);
|
|
auto label = static_cast<int>(labels[i]);
|
|
if (label < 0 || label >= nclass) {
|
|
label_error = label; label = 0;
|
|
}
|
|
const bst_float wt = info.GetWeight(i);
|
|
for (int k = 0; k < nclass; ++k) {
|
|
bst_float p = rec[k];
|
|
const float eps = 1e-16f;
|
|
const bst_float h = fmax(2.0f * p * (1.0f - p) * wt, eps);
|
|
if (label == k) {
|
|
gpair[i * nclass + k] = GradientPair((p - 1.0f) * wt, h);
|
|
} else {
|
|
gpair[i * nclass + k] = GradientPair(p* wt, h);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
CHECK(label_error >= 0 && label_error < nclass)
|
|
<< "SoftmaxMultiClassObj: label must be in [0, num_class),"
|
|
<< " num_class=" << nclass
|
|
<< " but found " << label_error << " in label.";
|
|
}
|
|
void PredTransform(HostDeviceVector<bst_float>* io_preds) override {
|
|
this->Transform(io_preds, output_prob_);
|
|
}
|
|
void EvalTransform(HostDeviceVector<bst_float>* io_preds) override {
|
|
this->Transform(io_preds, true);
|
|
}
|
|
const char* DefaultEvalMetric() const override {
|
|
return "merror";
|
|
}
|
|
|
|
private:
|
|
inline void Transform(HostDeviceVector<bst_float> *io_preds, bool prob) {
|
|
std::vector<bst_float> &preds = io_preds->HostVector();
|
|
std::vector<bst_float> tmp;
|
|
const int nclass = param_.num_class;
|
|
const auto ndata = static_cast<omp_ulong>(preds.size() / nclass);
|
|
if (!prob) tmp.resize(ndata);
|
|
|
|
#pragma omp parallel
|
|
{
|
|
std::vector<bst_float> rec(nclass);
|
|
#pragma omp for schedule(static)
|
|
for (omp_ulong j = 0; j < ndata; ++j) {
|
|
for (int k = 0; k < nclass; ++k) {
|
|
rec[k] = preds[j * nclass + k];
|
|
}
|
|
if (!prob) {
|
|
tmp[j] = static_cast<bst_float>(
|
|
common::FindMaxIndex(rec.begin(), rec.end()) - rec.begin());
|
|
} else {
|
|
common::Softmax(&rec);
|
|
for (int k = 0; k < nclass; ++k) {
|
|
preds[j * nclass + k] = rec[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!prob) preds = tmp;
|
|
}
|
|
// output probability
|
|
bool output_prob_;
|
|
// parameter
|
|
SoftmaxMultiClassParam param_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(SoftmaxMultiClassParam);
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SoftmaxMultiClass, "multi:softmax")
|
|
.describe("Softmax for multi-class classification, output class index.")
|
|
.set_body([]() { return new SoftmaxMultiClassObj(false); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SoftprobMultiClass, "multi:softprob")
|
|
.describe("Softmax for multi-class classification, output probability distribution.")
|
|
.set_body([]() { return new SoftmaxMultiClassObj(true); });
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|