xgboost/src/common/host_device_vector.h
Andy Adinets 72cd1517d6 Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage. (#3446)
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.

- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring

* Added const version of HostDeviceVector API calls.

- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions

* Updated src/linear/updater_gpu_coordinate.cu.

* Added read-only state for HostDeviceVector sync.

- this means no copies are performed if both host and devices access
  the HostDeviceVector read-only

* Fixed linter and test errors.

- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
  e.g. in calls to cudaSetDevice()

* Fixed explicit template instantiation errors for HostDeviceVector.

- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>

* Fixed HostDeviceVector tests that require multiple GPUs.

- added a mock set device handler; when set, it is called instead of cudaSetDevice()
2018-08-30 14:28:47 +12:00

257 lines
9.2 KiB
C++

/*!
* Copyright 2017 XGBoost contributors
*/
/**
* @file host_device_vector.h
* @brief A device-and-host vector abstraction layer.
*
* Why HostDeviceVector?<br/>
* With CUDA, one has to explicitly manage memory through 'cudaMemcpy' calls.
* This wrapper class hides this management from the users, thereby making it
* easy to integrate GPU/CPU usage under a single interface.
*
* Initialization/Allocation:<br/>
* One can choose to initialize the vector on CPU or GPU during constructor.
* (use the 'devices' argument) Or, can choose to use the 'Resize' method to
* allocate/resize memory explicitly, and use the 'Reshard' method
* to specify the devices.
*
* Accessing underlying data:<br/>
* Use 'HostVector' method to explicitly query for the underlying std::vector.
* If you need the raw device pointer, use the 'DevicePointer' method. For perf
* implications of these calls, see below.
*
* Accessing underling data and their perf implications:<br/>
* There are 4 scenarios to be considered here:
* HostVector and data on CPU --> no problems, std::vector returned immediately
* HostVector but data on GPU --> this causes a cudaMemcpy to be issued internally.
* subsequent calls to HostVector, will NOT incur this penalty.
* (assuming 'DevicePointer' is not called in between)
* DevicePointer but data on CPU --> this causes a cudaMemcpy to be issued internally.
* subsequent calls to DevicePointer, will NOT incur this penalty.
* (assuming 'HostVector' is not called in between)
* DevicePointer and data on GPU --> no problems, the device ptr
* will be returned immediately.
*
* What if xgboost is compiled without CUDA?<br/>
* In that case, there's a special implementation which always falls-back to
* working with std::vector. This logic can be found in host_device_vector.cc
*
* Why not consider CUDA unified memory?<br/>
* We did consider. However, it poses complications if we need to support both
* compiling with and without CUDA toolkit. It was easier to have
* 'HostDeviceVector' with a special-case implementation in host_device_vector.cc
*
* @note: Size and Devices methods are thread-safe.
* DevicePointer, DeviceStart, DeviceSize, tbegin and tend methods are thread-safe
* if different threads call these methods with different values of the device argument.
* All other methods are not thread safe.
*/
#ifndef XGBOOST_COMMON_HOST_DEVICE_VECTOR_H_
#define XGBOOST_COMMON_HOST_DEVICE_VECTOR_H_
#include <dmlc/logging.h>
#include <algorithm>
#include <cstdlib>
#include <initializer_list>
#include <vector>
#include "gpu_set.h"
#include "span.h"
// only include thrust-related files if host_device_vector.h
// is included from a .cu file
#ifdef __CUDACC__
#include <thrust/device_ptr.h>
#endif
namespace xgboost {
#ifdef __CUDACC__
// Sets a function to call instead of cudaSetDevice();
// only added for testing
void SetCudaSetDeviceHandler(void (*handler)(int));
#endif
template <typename T> struct HostDeviceVectorImpl;
// Distribution for the HostDeviceVector; it specifies such aspects as the devices it is
// distributed on, whether there are copies of elements from other GPUs as well as the granularity
// of splitting. It may also specify explicit boundaries for devices, in which case the size of the
// array cannot be changed.
class GPUDistribution {
template<typename T> friend struct HostDeviceVectorImpl;
public:
explicit GPUDistribution(GPUSet devices = GPUSet::Empty())
: devices_(devices), granularity_(1), overlap_(0) {}
private:
GPUDistribution(GPUSet devices, int granularity, int overlap,
std::vector<size_t> offsets)
: devices_(devices), granularity_(granularity), overlap_(overlap),
offsets_(std::move(offsets)) {}
public:
static GPUDistribution Block(GPUSet devices) { return GPUDistribution(devices); }
static GPUDistribution Overlap(GPUSet devices, int overlap) {
return GPUDistribution(devices, 1, overlap, std::vector<size_t>());
}
static GPUDistribution Granular(GPUSet devices, int granularity) {
return GPUDistribution(devices, granularity, 0, std::vector<size_t>());
}
static GPUDistribution Explicit(GPUSet devices, std::vector<size_t> offsets) {
return GPUDistribution(devices, 1, 0, offsets);
}
friend bool operator==(const GPUDistribution& a, const GPUDistribution& b) {
return a.devices_ == b.devices_ && a.granularity_ == b.granularity_ &&
a.overlap_ == b.overlap_ && a.offsets_ == b.offsets_;
}
friend bool operator!=(const GPUDistribution& a, const GPUDistribution& b) {
return !(a == b);
}
GPUSet Devices() const { return devices_; }
bool IsEmpty() const { return devices_.IsEmpty(); }
size_t ShardStart(size_t size, int index) const {
if (size == 0) { return 0; }
if (offsets_.size() > 0) {
// explicit offsets are provided
CHECK_EQ(offsets_.back(), size);
return offsets_.at(index);
}
// no explicit offsets
size_t begin = std::min(index * Portion(size), size);
begin = begin > size ? size : begin;
return begin;
}
size_t ShardSize(size_t size, int index) const {
if (size == 0) { return 0; }
if (offsets_.size() > 0) {
// explicit offsets are provided
CHECK_EQ(offsets_.back(), size);
return offsets_.at(index + 1) - offsets_.at(index) +
(index == devices_.Size() - 1 ? overlap_ : 0);
}
size_t portion = Portion(size);
size_t begin = std::min(index * portion, size);
size_t end = std::min((index + 1) * portion + overlap_ * granularity_, size);
return end - begin;
}
size_t ShardProperSize(size_t size, int index) const {
if (size == 0) { return 0; }
return ShardSize(size, index) - (devices_.Size() - 1 > index ? overlap_ : 0);
}
bool IsFixedSize() const { return !offsets_.empty(); }
private:
static size_t DivRoundUp(size_t a, size_t b) { return (a + b - 1) / b; }
static size_t RoundUp(size_t a, size_t b) { return DivRoundUp(a, b) * b; }
size_t Portion(size_t size) const {
return RoundUp
(DivRoundUp
(std::max(static_cast<int64_t>(size - overlap_ * granularity_),
static_cast<int64_t>(1)),
devices_.Size()), granularity_);
}
GPUSet devices_;
int granularity_;
int overlap_;
// explicit offsets for the GPU parts, if any
std::vector<size_t> offsets_;
};
enum GPUAccess {
kNone, kRead,
// write implies read
kWrite
};
inline GPUAccess operator-(GPUAccess a, GPUAccess b) {
return static_cast<GPUAccess>(static_cast<int>(a) - static_cast<int>(b));
}
template <typename T>
class HostDeviceVector {
public:
explicit HostDeviceVector(size_t size = 0, T v = T(),
GPUDistribution distribution = GPUDistribution());
HostDeviceVector(std::initializer_list<T> init,
GPUDistribution distribution = GPUDistribution());
explicit HostDeviceVector(const std::vector<T>& init,
GPUDistribution distribution = GPUDistribution());
~HostDeviceVector();
HostDeviceVector(const HostDeviceVector<T>&);
HostDeviceVector<T>& operator=(const HostDeviceVector<T>&);
size_t Size() const;
GPUSet Devices() const;
const GPUDistribution& Distribution() const;
common::Span<T> DeviceSpan(int device);
common::Span<const T> ConstDeviceSpan(int device) const;
common::Span<const T> DeviceSpan(int device) const { return ConstDeviceSpan(device); }
T* DevicePointer(int device);
const T* ConstDevicePointer(int device) const;
const T* DevicePointer(int device) const { return ConstDevicePointer(device); }
T* HostPointer() { return HostVector().data(); }
const T* ConstHostPointer() const { return ConstHostVector().data(); }
const T* HostPointer() const { return ConstHostPointer(); }
size_t DeviceStart(int device) const;
size_t DeviceSize(int device) const;
// only define functions returning device_ptr
// if HostDeviceVector.h is included from a .cu file
#ifdef __CUDACC__
thrust::device_ptr<T> tbegin(int device); // NOLINT
thrust::device_ptr<T> tend(int device); // NOLINT
thrust::device_ptr<const T> tcbegin(int device) const; // NOLINT
thrust::device_ptr<const T> tcend(int device) const; // NOLINT
thrust::device_ptr<const T> tbegin(int device) const { // NOLINT
return tcbegin(device);
}
thrust::device_ptr<const T> tend(int device) const { return tcend(device); } // NOLINT
void ScatterFrom(thrust::device_ptr<const T> begin, thrust::device_ptr<const T> end);
void GatherTo(thrust::device_ptr<T> begin, thrust::device_ptr<T> end) const;
#endif
void Fill(T v);
void Copy(const HostDeviceVector<T>& other);
void Copy(const std::vector<T>& other);
void Copy(std::initializer_list<T> other);
std::vector<T>& HostVector();
const std::vector<T>& ConstHostVector() const;
const std::vector<T>& HostVector() const {return ConstHostVector(); }
bool HostCanAccess(GPUAccess access) const;
bool DeviceCanAccess(int device, GPUAccess access) const;
void Reshard(const GPUDistribution& distribution) const;
void Reshard(GPUSet devices) const;
void Resize(size_t new_size, T v = T());
private:
HostDeviceVectorImpl<T>* impl_;
};
} // namespace xgboost
#endif // XGBOOST_COMMON_HOST_DEVICE_VECTOR_H_