* fix rebase conflict * [core] additional gblinear improvements * [R] callback for gblinear coefficients history * force eta=1 for gblinear python tests * add top_k to GreedyFeatureSelector * set eta=1 in shotgun test * [core] fix SparsePage processing in gblinear; col-wise multithreading in greedy updater * set sorted flag within TryInitColData * gblinear tests: use scale, add external memory test * fix multiclass for greedy updater * fix whitespace * fix typo
161 lines
5.1 KiB
Python
161 lines
5.1 KiB
Python
from __future__ import print_function
|
|
|
|
import itertools as it
|
|
import numpy as np
|
|
import sys
|
|
import os
|
|
import glob
|
|
import testing as tm
|
|
import unittest
|
|
import xgboost as xgb
|
|
try:
|
|
from sklearn import metrics, datasets
|
|
from sklearn.linear_model import ElasticNet
|
|
from sklearn.preprocessing import scale
|
|
except ImportError:
|
|
None
|
|
|
|
rng = np.random.RandomState(199)
|
|
|
|
num_rounds = 1000
|
|
|
|
|
|
def is_float(s):
|
|
try:
|
|
float(s)
|
|
return 1
|
|
except ValueError:
|
|
return 0
|
|
|
|
|
|
def xgb_get_weights(bst):
|
|
return np.array([float(s) for s in bst.get_dump()[0].split() if is_float(s)])
|
|
|
|
|
|
def check_ElasticNet(X, y, pred, tol, reg_alpha, reg_lambda, weights):
|
|
enet = ElasticNet(alpha=reg_alpha + reg_lambda,
|
|
l1_ratio=reg_alpha / (reg_alpha + reg_lambda))
|
|
enet.fit(X, y)
|
|
enet_pred = enet.predict(X)
|
|
assert np.isclose(weights, enet.coef_, rtol=tol, atol=tol).all()
|
|
assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all()
|
|
|
|
|
|
def train_diabetes(param_in):
|
|
data = datasets.load_diabetes()
|
|
X = scale(data.data)
|
|
dtrain = xgb.DMatrix(X, label=data.target)
|
|
param = {}
|
|
param.update(param_in)
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred = bst.predict(dtrain)
|
|
check_ElasticNet(X, data.target, xgb_pred, 1e-2,
|
|
param['alpha'], param['lambda'],
|
|
xgb_get_weights(bst)[1:])
|
|
|
|
|
|
def train_breast_cancer(param_in):
|
|
data = datasets.load_breast_cancer()
|
|
X = scale(data.data)
|
|
dtrain = xgb.DMatrix(X, label=data.target)
|
|
param = {'objective': 'binary:logistic'}
|
|
param.update(param_in)
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred = bst.predict(dtrain)
|
|
xgb_score = metrics.accuracy_score(data.target, np.round(xgb_pred))
|
|
assert xgb_score >= 0.8
|
|
|
|
|
|
def train_classification(param_in):
|
|
X, y = datasets.make_classification(random_state=rng)
|
|
X = scale(X)
|
|
dtrain = xgb.DMatrix(X, label=y)
|
|
param = {'objective': 'binary:logistic'}
|
|
param.update(param_in)
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred = bst.predict(dtrain)
|
|
xgb_score = metrics.accuracy_score(y, np.round(xgb_pred))
|
|
assert xgb_score >= 0.8
|
|
|
|
|
|
def train_classification_multi(param_in):
|
|
num_class = 3
|
|
X, y = datasets.make_classification(n_samples=100, random_state=rng,
|
|
n_classes=num_class, n_informative=4,
|
|
n_features=4, n_redundant=0)
|
|
X = scale(X)
|
|
dtrain = xgb.DMatrix(X, label=y)
|
|
param = {'objective': 'multi:softmax', 'num_class': num_class}
|
|
param.update(param_in)
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred = bst.predict(dtrain)
|
|
xgb_score = metrics.accuracy_score(y, np.round(xgb_pred))
|
|
assert xgb_score >= 0.50
|
|
|
|
|
|
def train_boston(param_in):
|
|
data = datasets.load_boston()
|
|
X = scale(data.data)
|
|
dtrain = xgb.DMatrix(X, label=data.target)
|
|
param = {}
|
|
param.update(param_in)
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred = bst.predict(dtrain)
|
|
check_ElasticNet(X, data.target, xgb_pred, 1e-2,
|
|
param['alpha'], param['lambda'],
|
|
xgb_get_weights(bst)[1:])
|
|
|
|
|
|
def train_external_mem(param_in):
|
|
data = datasets.load_boston()
|
|
X = scale(data.data)
|
|
y = data.target
|
|
param = {}
|
|
param.update(param_in)
|
|
dtrain = xgb.DMatrix(X, label=y)
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred = bst.predict(dtrain)
|
|
np.savetxt('tmptmp_1234.csv', np.hstack((y.reshape(len(y), 1), X)),
|
|
delimiter=',', fmt='%10.9f')
|
|
dtrain = xgb.DMatrix('tmptmp_1234.csv?format=csv&label_column=0#tmptmp_')
|
|
bst = xgb.train(param, dtrain, num_rounds)
|
|
xgb_pred_ext = bst.predict(dtrain)
|
|
assert np.abs(xgb_pred_ext - xgb_pred).max() < 1e-3
|
|
del dtrain, bst
|
|
for f in glob.glob("tmptmp_*"):
|
|
os.remove(f)
|
|
|
|
|
|
# Enumerates all permutations of variable parameters
|
|
def assert_updater_accuracy(linear_updater, variable_param):
|
|
param = {'booster': 'gblinear', 'updater': linear_updater, 'eta': 1.,
|
|
'top_k': 10, 'tolerance': 1e-5, 'nthread': 2}
|
|
names = sorted(variable_param)
|
|
combinations = it.product(*(variable_param[Name] for Name in names))
|
|
|
|
for set in combinations:
|
|
param_tmp = param.copy()
|
|
for i, name in enumerate(names):
|
|
param_tmp[name] = set[i]
|
|
|
|
print(param_tmp, file=sys.stderr)
|
|
train_boston(param_tmp)
|
|
train_diabetes(param_tmp)
|
|
train_classification(param_tmp)
|
|
train_classification_multi(param_tmp)
|
|
train_breast_cancer(param_tmp)
|
|
train_external_mem(param_tmp)
|
|
|
|
|
|
class TestLinear(unittest.TestCase):
|
|
def test_coordinate(self):
|
|
tm._skip_if_no_sklearn()
|
|
variable_param = {'alpha': [.005, .1], 'lambda': [.005],
|
|
'feature_selector': ['cyclic', 'shuffle', 'greedy', 'thrifty']}
|
|
assert_updater_accuracy('coord_descent', variable_param)
|
|
|
|
def test_shotgun(self):
|
|
tm._skip_if_no_sklearn()
|
|
variable_param = {'alpha': [.005, .1], 'lambda': [.005, .1]}
|
|
assert_updater_accuracy('shotgun', variable_param)
|