xgboost/plugin/updater_gpu/src/device_helpers.cuh
Rory Mitchell ef23e424f1 [GPU-Plugin] Add GPU accelerated prediction (#2593)
* [GPU-Plugin] Add GPU accelerated prediction

* Improve allocation message

* Update documentation

* Resolve linker error for predictor

* Add unit tests
2017-08-16 12:31:59 +12:00

829 lines
25 KiB
Plaintext

/*!
* Copyright 2017 XGBoost contributors
*/
#pragma once
#include <xgboost/logging.h>
#include <thrust/binary_search.h>
#include <thrust/device_vector.h>
#include <thrust/random.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system/cuda/execution_policy.h>
#include <thrust/system_error.h>
#include <algorithm>
#include <chrono>
#include <ctime>
#include <cub/cub.cuh>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "nccl.h"
// Uncomment to enable
// #define DEVICE_TIMER
#define TIMERS
namespace dh {
#define HOST_DEV_INLINE __host__ __device__ __forceinline__
#define DEV_INLINE __device__ __forceinline__
/*
* Error handling functions
*/
#define safe_cuda(ans) throw_on_cuda_error((ans), __FILE__, __LINE__)
inline cudaError_t throw_on_cuda_error(cudaError_t code, const char *file,
int line) {
if (code != cudaSuccess) {
std::stringstream ss;
ss << file << "(" << line << ")";
std::string file_and_line;
ss >> file_and_line;
throw thrust::system_error(code, thrust::cuda_category(), file_and_line);
}
return code;
}
#define safe_nccl(ans) throw_on_nccl_error((ans), __FILE__, __LINE__)
inline ncclResult_t throw_on_nccl_error(ncclResult_t code, const char *file,
int line) {
if (code != ncclSuccess) {
std::stringstream ss;
ss << "NCCL failure :" << ncclGetErrorString(code) << " ";
ss << file << "(" << line << ")";
throw std::runtime_error(ss.str());
}
return code;
}
#define gpuErrchk(ans) \
{ gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line,
bool abort = true) {
if (code != cudaSuccess) {
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file,
line);
if (abort){
std::stringstream ss;
ss << file << "(" << line << ")";
std::string file_and_line;
ss >> file_and_line;
throw thrust::system_error(code, thrust::cuda_category(), file_and_line);
}
}
}
inline int n_visible_devices() {
int n_visgpus = 0;
cudaGetDeviceCount(&n_visgpus);
return n_visgpus;
}
inline int n_devices_all(int n_gpus) {
int n_devices_visible = dh::n_visible_devices();
int n_devices = n_gpus < 0 ? n_devices_visible : n_gpus;
return (n_devices);
}
inline int n_devices(int n_gpus, int num_rows) {
int n_devices = dh::n_devices_all(n_gpus);
// fix-up device number to be limited by number of rows
n_devices = n_devices > num_rows ? num_rows : n_devices;
return (n_devices);
}
// if n_devices=-1, then use all visible devices
inline void synchronize_n_devices(int n_devices, std::vector<int> dList) {
for (int d_idx = 0; d_idx < n_devices; d_idx++) {
int device_idx = dList[d_idx];
safe_cuda(cudaSetDevice(device_idx));
safe_cuda(cudaDeviceSynchronize());
}
}
inline void synchronize_all() {
for (int device_idx = 0; device_idx < n_visible_devices(); device_idx++) {
safe_cuda(cudaSetDevice(device_idx));
safe_cuda(cudaDeviceSynchronize());
}
}
inline std::string device_name(int device_idx) {
cudaDeviceProp prop;
dh::safe_cuda(cudaGetDeviceProperties(&prop, device_idx));
return std::string(prop.name);
}
inline size_t available_memory(int device_idx) {
size_t device_free = 0;
size_t device_total = 0;
safe_cuda(cudaSetDevice(device_idx));
dh::safe_cuda(cudaMemGetInfo(&device_free, &device_total));
return device_free;
}
/**
* \fn inline int max_shared_memory(int device_idx)
*
* \brief Maximum shared memory per block on this device.
*
* \param device_idx Zero-based index of the device.
*/
inline int max_shared_memory(int device_idx) {
cudaDeviceProp prop;
dh::safe_cuda(cudaGetDeviceProperties(&prop, device_idx));
return prop.sharedMemPerBlock;
}
// ensure gpu_id is correct, so not dependent upon user knowing details
inline int get_device_idx(int gpu_id) {
// protect against overrun for gpu_id
return (std::abs(gpu_id) + 0) % dh::n_visible_devices();
}
/*
* Timers
*/
struct Timer {
typedef std::chrono::high_resolution_clock ClockT;
typedef std::chrono::high_resolution_clock::time_point TimePointT;
TimePointT start;
Timer() { reset(); }
void reset() { start = ClockT::now(); }
int64_t elapsed() const { return (ClockT::now() - start).count(); }
double elapsedSeconds() const {
return elapsed() * ((double)ClockT::period::num / ClockT::period::den);
}
void printElapsed(std::string label) {
// synchronize_n_devices(n_devices, dList);
printf("%s:\t %fs\n", label.c_str(), elapsedSeconds());
reset();
}
};
/*
* Range iterator
*/
class range {
public:
class iterator {
friend class range;
public:
__host__ __device__ int64_t operator*() const { return i_; }
__host__ __device__ const iterator &operator++() {
i_ += step_;
return *this;
}
__host__ __device__ iterator operator++(int) {
iterator copy(*this);
i_ += step_;
return copy;
}
__host__ __device__ bool operator==(const iterator &other) const {
return i_ >= other.i_;
}
__host__ __device__ bool operator!=(const iterator &other) const {
return i_ < other.i_;
}
__host__ __device__ void step(int s) { step_ = s; }
protected:
__host__ __device__ explicit iterator(int64_t start) : i_(start) {}
public:
uint64_t i_;
int step_ = 1;
};
__host__ __device__ iterator begin() const { return begin_; }
__host__ __device__ iterator end() const { return end_; }
__host__ __device__ range(int64_t begin, int64_t end)
: begin_(begin), end_(end) {}
__host__ __device__ void step(int s) { begin_.step(s); }
private:
iterator begin_;
iterator end_;
};
template <typename T>
__device__ range grid_stride_range(T begin, T end) {
begin += blockDim.x * blockIdx.x + threadIdx.x;
range r(begin, end);
r.step(gridDim.x * blockDim.x);
return r;
}
template <typename T>
__device__ range block_stride_range(T begin, T end) {
begin += threadIdx.x;
range r(begin, end);
r.step(blockDim.x);
return r;
}
// Threadblock iterates over range, filling with value. Requires all threads in block to be active.
template <typename IterT, typename ValueT>
__device__ void block_fill(IterT begin, size_t n, ValueT value) {
for (auto i : block_stride_range(static_cast<size_t>(0), n)) {
begin[i] = value;
}
}
/*
* Memory
*/
enum memory_type { DEVICE, DEVICE_MANAGED };
template <memory_type MemoryT>
class bulk_allocator;
template <typename T>
class dvec2;
template <typename T>
class dvec {
friend class dvec2<T>;
private:
T *_ptr;
size_t _size;
int _device_idx;
public:
void external_allocate(int device_idx, void *ptr, size_t size) {
if (!empty()) {
throw std::runtime_error("Tried to allocate dvec but already allocated");
}
_ptr = static_cast<T *>(ptr);
_size = size;
_device_idx = device_idx;
safe_cuda(cudaSetDevice(_device_idx));
}
dvec() : _ptr(NULL), _size(0), _device_idx(-1) {}
size_t size() const { return _size; }
int device_idx() const { return _device_idx; }
bool empty() const { return _ptr == NULL || _size == 0; }
T *data() { return _ptr; }
const T *data() const { return _ptr; }
std::vector<T> as_vector() const {
std::vector<T> h_vector(size());
safe_cuda(cudaSetDevice(_device_idx));
safe_cuda(cudaMemcpy(h_vector.data(), _ptr, size() * sizeof(T),
cudaMemcpyDeviceToHost));
return h_vector;
}
void fill(T value) {
safe_cuda(cudaSetDevice(_device_idx));
thrust::fill_n(thrust::device_pointer_cast(_ptr), size(), value);
}
void print() {
auto h_vector = this->as_vector();
for (auto e : h_vector) {
std::cout << e << " ";
}
std::cout << "\n";
}
thrust::device_ptr<T> tbegin() { return thrust::device_pointer_cast(_ptr); }
thrust::device_ptr<T> tend() {
return thrust::device_pointer_cast(_ptr + size());
}
template <typename T2>
dvec &operator=(const std::vector<T2> &other) {
this->copy(other.begin(), other.end());
return *this;
}
dvec &operator=(dvec<T> &other) {
if (other.size() != size()) {
throw std::runtime_error(
"Cannot copy assign dvec to dvec, sizes are different");
}
safe_cuda(cudaSetDevice(this->device_idx()));
if (other.device_idx() == this->device_idx()) {
thrust::copy(other.tbegin(), other.tend(), this->tbegin());
} else {
std::cout << "deviceother: " << other.device_idx()
<< " devicethis: " << this->device_idx() << std::endl;
std::cout << "size deviceother: " << other.size()
<< " devicethis: " << this->device_idx() << std::endl;
throw std::runtime_error("Cannot copy to/from different devices");
}
return *this;
}
template <typename IterT>
void copy(IterT begin, IterT end) {
safe_cuda(cudaSetDevice(this->device_idx()));
if (end - begin != size()) {
throw std::runtime_error(
"Cannot copy assign vector to dvec, sizes are different");
}
thrust::copy(begin, end, this->tbegin());
}
};
/**
* @class dvec2 device_helpers.cuh
* @brief wrapper for storing 2 dvec's which are needed for cub::DoubleBuffer
*/
template <typename T>
class dvec2 {
private:
dvec<T> _d1, _d2;
cub::DoubleBuffer<T> _buff;
int _device_idx;
public:
void external_allocate(int device_idx, void *ptr1, void *ptr2, size_t size) {
if (!empty()) {
throw std::runtime_error("Tried to allocate dvec2 but already allocated");
}
_device_idx = device_idx;
_d1.external_allocate(_device_idx, ptr1, size);
_d2.external_allocate(_device_idx, ptr2, size);
_buff.d_buffers[0] = static_cast<T *>(ptr1);
_buff.d_buffers[1] = static_cast<T *>(ptr2);
_buff.selector = 0;
}
dvec2() : _d1(), _d2(), _buff(), _device_idx(-1) {}
size_t size() const { return _d1.size(); }
int device_idx() const { return _device_idx; }
bool empty() const { return _d1.empty() || _d2.empty(); }
cub::DoubleBuffer<T> &buff() { return _buff; }
dvec<T> &d1() { return _d1; }
dvec<T> &d2() { return _d2; }
T *current() { return _buff.Current(); }
dvec<T> &current_dvec() { return _buff.selector == 0 ? d1() : d2(); }
T *other() { return _buff.Alternate(); }
};
template <memory_type MemoryT>
class bulk_allocator {
std::vector<char *> d_ptr;
std::vector<size_t> _size;
std::vector<int> _device_idx;
const int align = 256;
template <typename SizeT>
size_t align_round_up(SizeT n) {
n = (n + align - 1) / align;
return n * align;
}
template <typename T, typename SizeT>
size_t get_size_bytes(dvec<T> *first_vec, SizeT first_size) {
return align_round_up<SizeT>(first_size * sizeof(T));
}
template <typename T, typename SizeT, typename... Args>
size_t get_size_bytes(dvec<T> *first_vec, SizeT first_size, Args... args) {
return get_size_bytes<T, SizeT>(first_vec, first_size) +
get_size_bytes(args...);
}
template <typename T, typename SizeT>
void allocate_dvec(int device_idx, char *ptr, dvec<T> *first_vec,
SizeT first_size) {
first_vec->external_allocate(device_idx, static_cast<void *>(ptr),
first_size);
}
template <typename T, typename SizeT, typename... Args>
void allocate_dvec(int device_idx, char *ptr, dvec<T> *first_vec,
SizeT first_size, Args... args) {
first_vec->external_allocate(device_idx, static_cast<void *>(ptr),
first_size);
ptr += align_round_up(first_size * sizeof(T));
allocate_dvec(device_idx, ptr, args...);
}
// template <memory_type MemoryT>
char *allocate_device(int device_idx, size_t bytes, memory_type t) {
char *ptr;
if (t == memory_type::DEVICE) {
safe_cuda(cudaSetDevice(device_idx));
safe_cuda(cudaMalloc(&ptr, bytes));
} else {
safe_cuda(cudaMallocManaged(&ptr, bytes));
}
return ptr;
}
template <typename T, typename SizeT>
size_t get_size_bytes(dvec2<T> *first_vec, SizeT first_size) {
return 2 * align_round_up(first_size * sizeof(T));
}
template <typename T, typename SizeT, typename... Args>
size_t get_size_bytes(dvec2<T> *first_vec, SizeT first_size, Args... args) {
return get_size_bytes<T, SizeT>(first_vec, first_size) +
get_size_bytes(args...);
}
template <typename T, typename SizeT>
void allocate_dvec(int device_idx, char *ptr, dvec2<T> *first_vec,
SizeT first_size) {
first_vec->external_allocate(
device_idx, static_cast<void *>(ptr),
static_cast<void *>(ptr + align_round_up(first_size * sizeof(T))),
first_size);
}
template <typename T, typename SizeT, typename... Args>
void allocate_dvec(int device_idx, char *ptr, dvec2<T> *first_vec,
SizeT first_size, Args... args) {
allocate_dvec<T, SizeT>(device_idx, ptr, first_vec, first_size);
ptr += (align_round_up(first_size * sizeof(T)) * 2);
allocate_dvec(device_idx, ptr, args...);
}
public:
~bulk_allocator() {
for (size_t i = 0; i < d_ptr.size(); i++) {
if (!(d_ptr[i] == nullptr)) {
safe_cuda(cudaSetDevice(_device_idx[i]));
safe_cuda(cudaFree(d_ptr[i]));
}
}
}
// returns sum of bytes for all allocations
size_t size() {
return std::accumulate(_size.begin(), _size.end(), static_cast<size_t>(0));
}
template <typename... Args>
void allocate(int device_idx, bool silent ,Args... args) {
size_t size = get_size_bytes(args...);
char *ptr = allocate_device(device_idx, size, MemoryT);
allocate_dvec(device_idx, ptr, args...);
d_ptr.push_back(ptr);
_size.push_back(size);
_device_idx.push_back(device_idx);
if(!silent)
{
const int mb_size = 1048576;
LOG(CONSOLE) << "Allocated " << size / mb_size << "MB on [" << device_idx
<< "] " << device_name(device_idx) << ", "
<< available_memory(device_idx) / mb_size << "MB remaining.";
}
}
};
// Keep track of cub library device allocation
struct CubMemory {
void *d_temp_storage;
size_t temp_storage_bytes;
// Thrust
typedef char value_type;
CubMemory() : d_temp_storage(NULL), temp_storage_bytes(0) {}
~CubMemory() { Free(); }
void Free() {
if (this->IsAllocated()) {
safe_cuda(cudaFree(d_temp_storage));
}
}
void LazyAllocate(size_t num_bytes) {
if (num_bytes > temp_storage_bytes) {
Free();
safe_cuda(cudaMalloc(&d_temp_storage, num_bytes));
temp_storage_bytes = num_bytes;
}
}
// Thrust
char *allocate(std::ptrdiff_t num_bytes) {
LazyAllocate(num_bytes);
return reinterpret_cast<char *>(d_temp_storage);
}
// Thrust
void deallocate(char *ptr, size_t n) {
// Do nothing
}
bool IsAllocated() { return d_temp_storage != NULL; }
};
/*
* Utility functions
*/
template <typename T>
void print(const thrust::device_vector<T> &v, size_t max_items = 10) {
thrust::host_vector<T> h = v;
for (size_t i = 0; i < std::min(max_items, h.size()); i++) {
std::cout << " " << h[i];
}
std::cout << "\n";
}
template <typename T>
void print(const dvec<T> &v, size_t max_items = 10) {
std::vector<T> h = v.as_vector();
for (size_t i = 0; i < std::min(max_items, h.size()); i++) {
std::cout << " " << h[i];
}
std::cout << "\n";
}
template <typename T>
void print(char *label, const thrust::device_vector<T> &v,
const char *format = "%d ", size_t max = 10) {
thrust::host_vector<T> h_v = v;
std::cout << label << ":\n";
for (size_t i = 0; i < std::min(static_cast<size_t>(h_v.size()), max); i++) {
printf(format, h_v[i]);
}
std::cout << "\n";
}
template <typename T1, typename T2>
T1 div_round_up(const T1 a, const T2 b) {
return static_cast<T1>(ceil(static_cast<double>(a) / b));
}
template <typename T>
thrust::device_ptr<T> dptr(T *d_ptr) {
return thrust::device_pointer_cast(d_ptr);
}
template <typename T>
T *raw(thrust::device_vector<T> &v) { // NOLINT
return raw_pointer_cast(v.data());
}
template <typename T>
const T *raw(const thrust::device_vector<T> &v) { // NOLINT
return raw_pointer_cast(v.data());
}
template <typename T>
size_t size_bytes(const thrust::device_vector<T> &v) {
return sizeof(T) * v.size();
}
/*
* Kernel launcher
*/
template <typename L>
__global__ void launch_n_kernel(size_t begin, size_t end, L lambda) {
for (auto i : grid_stride_range(begin, end)) {
lambda(i);
}
}
template <typename L>
__global__ void launch_n_kernel(int device_idx, size_t begin, size_t end,
L lambda) {
for (auto i : grid_stride_range(begin, end)) {
lambda(i, device_idx);
}
}
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void launch_n(int device_idx, size_t n, L lambda) {
safe_cuda(cudaSetDevice(device_idx));
// TODO: Template on n so GRID_SIZE always fits into int.
const int GRID_SIZE = div_round_up(n, ITEMS_PER_THREAD * BLOCK_THREADS);
#if defined(__CUDACC__)
launch_n_kernel<<<GRID_SIZE, BLOCK_THREADS>>>(static_cast<size_t>(0), n,
lambda);
#endif
}
// if n_devices=-1, then use all visible devices
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void multi_launch_n(size_t n, int n_devices, L lambda) {
n_devices = n_devices < 0 ? n_visible_devices() : n_devices;
CHECK_LE(n_devices, n_visible_devices()) << "Number of devices requested "
"needs to be less than equal to "
"number of visible devices.";
// TODO: Template on n so GRID_SIZE always fits into int.
const int GRID_SIZE = div_round_up(n, ITEMS_PER_THREAD * BLOCK_THREADS);
#if defined(__CUDACC__)
n_devices = n_devices > n ? n : n_devices;
for (int device_idx = 0; device_idx < n_devices; device_idx++) {
safe_cuda(cudaSetDevice(device_idx));
size_t begin = (n / n_devices) * device_idx;
size_t end = std::min((n / n_devices) * (device_idx + 1), n);
launch_n_kernel<<<GRID_SIZE, BLOCK_THREADS>>>(device_idx, begin, end,
lambda);
}
#endif
}
/*
* Random
*/
struct BernoulliRng {
float p;
int seed;
__host__ __device__ BernoulliRng(float p, int seed) : p(p), seed(seed) {}
__host__ __device__ bool operator()(const int i) const {
thrust::default_random_engine rng(seed);
thrust::uniform_real_distribution<float> dist;
rng.discard(i);
return dist(rng) <= p;
}
};
/**
* @brief Helper macro to measure timing on GPU
* @param call the GPU call
* @param name name used to track later
* @param stream cuda stream where to measure time
*/
#define TIMEIT(call, name) \
do { \
dh::Timer t1234; \
call; \
t1234.printElapsed(name); \
} while (0)
// Load balancing search
template <typename coordinate_t, typename segments_t, typename offset_t>
void FindMergePartitions(int device_idx, coordinate_t *d_tile_coordinates, int num_tiles,
int tile_size, segments_t segments, offset_t num_rows,
offset_t num_elements) {
dh::launch_n(device_idx, num_tiles + 1, [=] __device__(int idx) {
offset_t diagonal = idx * tile_size;
coordinate_t tile_coordinate;
cub::CountingInputIterator<offset_t> nonzero_indices(0);
// Search the merge path
// Cast to signed integer as this function can have negatives
cub::MergePathSearch(static_cast<int64_t>(diagonal), segments + 1,
nonzero_indices, static_cast<int64_t>(num_rows),
static_cast<int64_t>(num_elements), tile_coordinate);
// Output starting offset
d_tile_coordinates[idx] = tile_coordinate;
});
}
template <int TILE_SIZE, int ITEMS_PER_THREAD, int BLOCK_THREADS,
typename offset_t, typename coordinate_t, typename func_t,
typename segments_iter>
__global__ void LbsKernel(coordinate_t *d_coordinates,
segments_iter segment_end_offsets, func_t f,
offset_t num_segments) {
int tile = blockIdx.x;
coordinate_t tile_start_coord = d_coordinates[tile];
coordinate_t tile_end_coord = d_coordinates[tile + 1];
int64_t tile_num_rows = tile_end_coord.x - tile_start_coord.x;
int64_t tile_num_elements = tile_end_coord.y - tile_start_coord.y;
cub::CountingInputIterator<offset_t> tile_element_indices(tile_start_coord.y);
coordinate_t thread_start_coord;
typedef typename std::iterator_traits<segments_iter>::value_type segment_t;
__shared__ struct {
segment_t tile_segment_end_offsets[TILE_SIZE + 1];
segment_t output_segment[TILE_SIZE];
} temp_storage;
for (auto item : dh::block_stride_range(int(0), int(tile_num_rows + 1))) {
temp_storage.tile_segment_end_offsets[item] =
segment_end_offsets[min(tile_start_coord.x + item, num_segments - 1)];
}
__syncthreads();
int64_t diag = threadIdx.x * ITEMS_PER_THREAD;
// Cast to signed integer as this function can have negatives
cub::MergePathSearch(diag, // Diagonal
temp_storage.tile_segment_end_offsets, // List A
tile_element_indices, // List B
tile_num_rows, tile_num_elements, thread_start_coord);
coordinate_t thread_current_coord = thread_start_coord;
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM) {
if (tile_element_indices[thread_current_coord.y] <
temp_storage.tile_segment_end_offsets[thread_current_coord.x]) {
temp_storage.output_segment[thread_current_coord.y] =
thread_current_coord.x + tile_start_coord.x;
++thread_current_coord.y;
} else {
++thread_current_coord.x;
}
}
__syncthreads();
for (auto item : dh::block_stride_range(int(0), int(tile_num_elements))) {
f(tile_start_coord.y + item, temp_storage.output_segment[item]);
}
}
template <typename func_t, typename segments_iter, typename offset_t>
void SparseTransformLbs(int device_idx, dh::CubMemory *temp_memory, offset_t count,
segments_iter segments, offset_t num_segments, func_t f) {
typedef typename cub::CubVector<offset_t, 2>::Type coordinate_t;
dh::safe_cuda(cudaSetDevice(device_idx));
const int BLOCK_THREADS = 256;
const int ITEMS_PER_THREAD = 1;
const int TILE_SIZE = BLOCK_THREADS * ITEMS_PER_THREAD;
int num_tiles = dh::div_round_up(count + num_segments, BLOCK_THREADS);
temp_memory->LazyAllocate(sizeof(coordinate_t) * (num_tiles + 1));
coordinate_t *tmp_tile_coordinates =
reinterpret_cast<coordinate_t *>(temp_memory->d_temp_storage);
FindMergePartitions(device_idx, tmp_tile_coordinates, num_tiles, BLOCK_THREADS, segments,
num_segments, count);
LbsKernel<TILE_SIZE, ITEMS_PER_THREAD, BLOCK_THREADS, offset_t>
<<<num_tiles, BLOCK_THREADS>>>(tmp_tile_coordinates, segments + 1, f,
num_segments);
}
template <typename func_t, typename offset_t>
void DenseTransformLbs(int device_idx, offset_t count, offset_t num_segments, func_t f) {
CHECK(count % num_segments == 0) << "Data is not dense.";
launch_n(device_idx, count, [=]__device__(offset_t idx)
{
offset_t segment = idx / (count / num_segments);
f(idx, segment);
});
}
/**
* \fn template <typename func_t, typename segments_iter, typename offset_t> void TransformLbs(int device_idx, dh::CubMemory *temp_memory, offset_t count, segments_iter segments, offset_t num_segments, bool is_dense, func_t f)
*
* \brief Load balancing search function. Reads a CSR type matrix description and allows a function
* to be executed on each element. Search 'modern GPU load balancing search' for more
* information.
*
* \author Rory
* \date 7/9/2017
*
* \tparam func_t Type of the function t.
* \tparam segments_iter Type of the segments iterator.
* \tparam offset_t Type of the offset.
* \param device_idx Zero-based index of the device.
* \param [in,out] temp_memory Temporary memory allocator.
* \param count Number of elements.
* \param segments Device pointer to segments.
* \param num_segments Number of segments.
* \param is_dense True if this object is dense.
* \param f Lambda to be executed on matrix elements.
*/
template <typename func_t, typename segments_iter, typename offset_t>
void TransformLbs(int device_idx, dh::CubMemory *temp_memory, offset_t count,
segments_iter segments, offset_t num_segments, bool is_dense, func_t f) {
if (is_dense) {
DenseTransformLbs(device_idx, count, num_segments, f);
}
else {
SparseTransformLbs(device_idx, temp_memory, count, segments, num_segments, f);
}
}
} // namespace dh