xgboost/R-package/R/xgb.load.R

67 lines
1.8 KiB
R

#' Load xgboost model from binary file
#'
#' Load xgboost model from the binary model file.
#'
#' @param modelfile the name of the binary input file.
#'
#' @details
#' The input file is expected to contain a model saved in an xgboost model format
#' using either \code{\link{xgb.save}} or \code{\link{xgb.cb.save.model}} in R, or using some
#' appropriate methods from other xgboost interfaces. E.g., a model trained in Python and
#' saved from there in xgboost format, could be loaded from R.
#'
#' Note: a model saved as an R-object, has to be loaded using corresponding R-methods,
#' not \code{xgb.load}.
#'
#' @return
#' An object of \code{xgb.Booster} class.
#'
#' @seealso
#' \code{\link{xgb.save}}
#'
#' @examples
#' \dontshow{RhpcBLASctl::omp_set_num_threads(1)}
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#'
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgb.train(
#' data = xgb.DMatrix(train$data, label = train$label),
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' nrounds = 2,
#' objective = "binary:logistic"
#' )
#'
#' fname <- file.path(tempdir(), "xgb.ubj")
#' xgb.save(bst, fname)
#' bst <- xgb.load(fname)
#' @export
xgb.load <- function(modelfile) {
if (is.null(modelfile))
stop("xgb.load: modelfile cannot be NULL")
bst <- xgb.Booster(
params = list(),
cachelist = list(),
modelfile = modelfile
)
bst <- bst$bst
# re-use modelfile if it is raw so we do not need to serialize
if (typeof(modelfile) == "raw") {
warning(
paste(
"The support for loading raw booster with `xgb.load` will be ",
"discontinued in upcoming release. Use `xgb.load.raw` instead. "
)
)
}
return(bst)
}