xgboost/src/objective/regression_obj.cc
AbdealiJK 6f16f0ef58 Use bst_float consistently throughout (#1824)
* Fix various typos

* Add override to functions that are overridden

gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.

* Use bst_float consistently

Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.

In some cases, when due to additions and so on the value can
take a larger value, double is used.

This ensures that type conversions are minimal and reduces loss of
precision.
2016-11-30 10:02:10 -08:00

348 lines
13 KiB
C++

/*!
* Copyright 2015 by Contributors
* \file regression.cc
* \brief Definition of single-value regression and classification objectives.
* \author Tianqi Chen, Kailong Chen
*/
#include <dmlc/omp.h>
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include <vector>
#include <algorithm>
#include <utility>
#include "../common/math.h"
namespace xgboost {
namespace obj {
DMLC_REGISTRY_FILE_TAG(regression_obj);
// common regressions
// linear regression
struct LinearSquareLoss {
static bst_float PredTransform(bst_float x) { return x; }
static bool CheckLabel(bst_float x) { return true; }
static bst_float FirstOrderGradient(bst_float predt, bst_float label) { return predt - label; }
static bst_float SecondOrderGradient(bst_float predt, bst_float label) { return 1.0f; }
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() { return ""; }
static const char* DefaultEvalMetric() { return "rmse"; }
};
// logistic loss for probability regression task
struct LogisticRegression {
static bst_float PredTransform(bst_float x) { return common::Sigmoid(x); }
static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
static bst_float FirstOrderGradient(bst_float predt, bst_float label) { return predt - label; }
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
const float eps = 1e-16f;
return std::max(predt * (1.0f - predt), eps);
}
static bst_float ProbToMargin(bst_float base_score) {
CHECK(base_score > 0.0f && base_score < 1.0f)
<< "base_score must be in (0,1) for logistic loss";
return -std::log(1.0f / base_score - 1.0f);
}
static const char* LabelErrorMsg() {
return "label must be in [0,1] for logistic regression";
}
static const char* DefaultEvalMetric() { return "rmse"; }
};
// logistic loss for binary classification task.
struct LogisticClassification : public LogisticRegression {
static const char* DefaultEvalMetric() { return "error"; }
};
// logistic loss, but predict un-transformed margin
struct LogisticRaw : public LogisticRegression {
static bst_float PredTransform(bst_float x) { return x; }
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = common::Sigmoid(predt);
return predt - label;
}
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
const float eps = 1e-16f;
predt = common::Sigmoid(predt);
return std::max(predt * (1.0f - predt), eps);
}
static const char* DefaultEvalMetric() { return "auc"; }
};
struct RegLossParam : public dmlc::Parameter<RegLossParam> {
float scale_pos_weight;
// declare parameters
DMLC_DECLARE_PARAMETER(RegLossParam) {
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
.describe("Scale the weight of positive examples by this factor");
}
};
// regression loss function
template<typename Loss>
class RegLossObj : public ObjFunction {
public:
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(const std::vector<bst_float> &preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) override {
CHECK_NE(info.labels.size(), 0) << "label set cannot be empty";
CHECK_EQ(preds.size(), info.labels.size())
<< "labels are not correctly provided"
<< "preds.size=" << preds.size() << ", label.size=" << info.labels.size();
out_gpair->resize(preds.size());
// check if label in range
bool label_correct = true;
// start calculating gradient
const omp_ulong ndata = static_cast<omp_ulong>(preds.size());
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) {
bst_float p = Loss::PredTransform(preds[i]);
bst_float w = info.GetWeight(i);
if (info.labels[i] == 1.0f) w *= param_.scale_pos_weight;
if (!Loss::CheckLabel(info.labels[i])) label_correct = false;
out_gpair->at(i) = bst_gpair(Loss::FirstOrderGradient(p, info.labels[i]) * w,
Loss::SecondOrderGradient(p, info.labels[i]) * w);
}
if (!label_correct) {
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
const char* DefaultEvalMetric() const override {
return Loss::DefaultEvalMetric();
}
void PredTransform(std::vector<bst_float> *io_preds) override {
std::vector<bst_float> &preds = *io_preds;
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
preds[j] = Loss::PredTransform(preds[j]);
}
}
bst_float ProbToMargin(bst_float base_score) const override {
return Loss::ProbToMargin(base_score);
}
protected:
RegLossParam param_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(RegLossParam);
XGBOOST_REGISTER_OBJECTIVE(LinearRegression, "reg:linear")
.describe("Linear regression.")
.set_body([]() { return new RegLossObj<LinearSquareLoss>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRegression, "reg:logistic")
.describe("Logistic regression for probability regression task.")
.set_body([]() { return new RegLossObj<LogisticRegression>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticClassification, "binary:logistic")
.describe("Logistic regression for binary classification task.")
.set_body([]() { return new RegLossObj<LogisticClassification>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRaw, "binary:logitraw")
.describe("Logistic regression for classification, output score before logistic transformation")
.set_body([]() { return new RegLossObj<LogisticRaw>(); });
// declare parameter
struct PoissonRegressionParam : public dmlc::Parameter<PoissonRegressionParam> {
float max_delta_step;
DMLC_DECLARE_PARAMETER(PoissonRegressionParam) {
DMLC_DECLARE_FIELD(max_delta_step).set_lower_bound(0.0f).set_default(0.7f)
.describe("Maximum delta step we allow each weight estimation to be." \
" This parameter is required for possion regression.");
}
};
// poisson regression for count
class PoissonRegression : public ObjFunction {
public:
// declare functions
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(const std::vector<bst_float> &preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) override {
CHECK_NE(info.labels.size(), 0) << "label set cannot be empty";
CHECK_EQ(preds.size(), info.labels.size()) << "labels are not correctly provided";
out_gpair->resize(preds.size());
// check if label in range
bool label_correct = true;
// start calculating gradient
const omp_ulong ndata = static_cast<omp_ulong>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) { // NOLINT(*)
bst_float p = preds[i];
bst_float w = info.GetWeight(i);
bst_float y = info.labels[i];
if (y >= 0.0f) {
out_gpair->at(i) = bst_gpair((std::exp(p) - y) * w,
std::exp(p + param_.max_delta_step) * w);
} else {
label_correct = false;
}
}
CHECK(label_correct) << "PoissonRegression: label must be nonnegative";
}
void PredTransform(std::vector<bst_float> *io_preds) override {
std::vector<bst_float> &preds = *io_preds;
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (long j = 0; j < ndata; ++j) { // NOLINT(*)
preds[j] = std::exp(preds[j]);
}
}
void EvalTransform(std::vector<bst_float> *io_preds) override {
PredTransform(io_preds);
}
bst_float ProbToMargin(bst_float base_score) const override {
return std::log(base_score);
}
const char* DefaultEvalMetric(void) const override {
return "poisson-nloglik";
}
private:
PoissonRegressionParam param_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(PoissonRegressionParam);
XGBOOST_REGISTER_OBJECTIVE(PoissonRegression, "count:poisson")
.describe("Possion regression for count data.")
.set_body([]() { return new PoissonRegression(); });
// gamma regression
class GammaRegression : public ObjFunction {
public:
// declare functions
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
}
void GetGradient(const std::vector<bst_float> &preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) override {
CHECK_NE(info.labels.size(), 0) << "label set cannot be empty";
CHECK_EQ(preds.size(), info.labels.size()) << "labels are not correctly provided";
out_gpair->resize(preds.size());
// check if label in range
bool label_correct = true;
// start calculating gradient
const omp_ulong ndata = static_cast<omp_ulong>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) { // NOLINT(*)
bst_float p = preds[i];
bst_float w = info.GetWeight(i);
bst_float y = info.labels[i];
if (y >= 0.0f) {
out_gpair->at(i) = bst_gpair((1 - y / std::exp(p)) * w, y / std::exp(p) * w);
} else {
label_correct = false;
}
}
CHECK(label_correct) << "GammaRegression: label must be positive";
}
void PredTransform(std::vector<bst_float> *io_preds) override {
std::vector<bst_float> &preds = *io_preds;
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (long j = 0; j < ndata; ++j) { // NOLINT(*)
preds[j] = std::exp(preds[j]);
}
}
void EvalTransform(std::vector<bst_float> *io_preds) override {
PredTransform(io_preds);
}
bst_float ProbToMargin(bst_float base_score) const override {
return std::log(base_score);
}
const char* DefaultEvalMetric(void) const override {
return "gamma-nloglik";
}
};
// register the objective functions
XGBOOST_REGISTER_OBJECTIVE(GammaRegression, "reg:gamma")
.describe("Gamma regression for severity data.")
.set_body([]() { return new GammaRegression(); });
// declare parameter
struct TweedieRegressionParam : public dmlc::Parameter<TweedieRegressionParam> {
float tweedie_variance_power;
DMLC_DECLARE_PARAMETER(TweedieRegressionParam) {
DMLC_DECLARE_FIELD(tweedie_variance_power).set_range(1.0f, 2.0f).set_default(1.5f)
.describe("Tweedie variance power. Must be between in range [1, 2).");
}
};
// tweedie regression
class TweedieRegression : public ObjFunction {
public:
// declare functions
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(const std::vector<bst_float> &preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) override {
CHECK_NE(info.labels.size(), 0) << "label set cannot be empty";
CHECK_EQ(preds.size(), info.labels.size()) << "labels are not correctly provided";
out_gpair->resize(preds.size());
// check if label in range
bool label_correct = true;
// start calculating gradient
const omp_ulong ndata = static_cast<omp_ulong>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) { // NOLINT(*)
bst_float p = preds[i];
bst_float w = info.GetWeight(i);
bst_float y = info.labels[i];
float rho = param_.tweedie_variance_power;
if (y >= 0.0f) {
bst_float grad = -y * std::exp((1 - rho) * p) + std::exp((2 - rho) * p);
bst_float hess = -y * (1 - rho) * \
std::exp((1 - rho) * p) + (2 - rho) * std::exp((2 - rho) * p);
out_gpair->at(i) = bst_gpair(grad * w, hess * w);
} else {
label_correct = false;
}
}
CHECK(label_correct) << "TweedieRegression: label must be nonnegative";
}
void PredTransform(std::vector<bst_float> *io_preds) override {
std::vector<bst_float> &preds = *io_preds;
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (long j = 0; j < ndata; ++j) { // NOLINT(*)
preds[j] = std::exp(preds[j]);
}
}
const char* DefaultEvalMetric(void) const override {
std::ostringstream os;
os << "tweedie-nloglik@" << param_.tweedie_variance_power;
std::string metric = os.str();
return metric.c_str();
}
private:
TweedieRegressionParam param_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(TweedieRegressionParam);
XGBOOST_REGISTER_OBJECTIVE(TweedieRegression, "reg:tweedie")
.describe("Tweedie regression for insurance data.")
.set_body([]() { return new TweedieRegression(); });
} // namespace obj
} // namespace xgboost