xgboost/tests/cpp/tree/hist/test_evaluate_splits.cc

113 lines
3.8 KiB
C++

#include <gtest/gtest.h>
#include <xgboost/base.h>
#include "../../../../src/tree/hist/evaluate_splits.h"
#include "../../../../src/tree/updater_quantile_hist.h"
#include "../../../../src/common/hist_util.h"
#include "../../helpers.h"
namespace xgboost {
namespace tree {
template <typename GradientSumT> void TestEvaluateSplits() {
int static constexpr kRows = 8, kCols = 16;
auto orig = omp_get_max_threads();
int32_t n_threads = std::min(omp_get_max_threads(), 4);
omp_set_num_threads(n_threads);
auto sampler = std::make_shared<common::ColumnSampler>();
TrainParam param;
param.UpdateAllowUnknown(Args{{}});
param.min_child_weight = 0;
param.reg_lambda = 0;
auto dmat = RandomDataGenerator(kRows, kCols, 0).Seed(3).GenerateDMatrix();
auto evaluator =
HistEvaluator<GradientSumT, CPUExpandEntry>{param, dmat->Info(), n_threads, sampler};
common::HistCollection<GradientSumT> hist;
std::vector<GradientPair> row_gpairs = {
{1.23f, 0.24f}, {0.24f, 0.25f}, {0.26f, 0.27f}, {2.27f, 0.28f},
{0.27f, 0.29f}, {0.37f, 0.39f}, {-0.47f, 0.49f}, {0.57f, 0.59f}};
size_t constexpr kMaxBins = 4;
// dense, no missing values
GHistIndexMatrix gmat(dmat.get(), kMaxBins);
common::RowSetCollection row_set_collection;
std::vector<size_t> &row_indices = *row_set_collection.Data();
row_indices.resize(kRows);
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
auto hist_builder = GHistBuilder<GradientSumT>(n_threads, gmat.cut.Ptrs().back());
hist.Init(gmat.cut.Ptrs().back());
hist.AddHistRow(0);
hist.AllocateAllData();
hist_builder.template BuildHist<false>(row_gpairs, row_set_collection[0],
gmat, hist[0]);
// Compute total gradient for all data points
GradientPairPrecise total_gpair;
for (const auto &e : row_gpairs) {
total_gpair += GradientPairPrecise(e);
}
RegTree tree;
std::vector<CPUExpandEntry> entries(1);
entries.front().nid = 0;
entries.front().depth = 0;
evaluator.InitRoot(GradStats{total_gpair});
evaluator.EvaluateSplits(hist, gmat.cut, tree, &entries);
auto best_loss_chg =
evaluator.Evaluator().CalcSplitGain(
param, 0, entries.front().split.SplitIndex(),
entries.front().split.left_sum, entries.front().split.right_sum) -
evaluator.Stats().front().root_gain;
ASSERT_EQ(entries.front().split.loss_chg, best_loss_chg);
ASSERT_GT(entries.front().split.loss_chg, 16.2f);
// Assert that's the best split
for (size_t i = 1; i < gmat.cut.Ptrs().size(); ++i) {
GradStats left, right;
for (size_t j = gmat.cut.Ptrs()[i-1]; j < gmat.cut.Ptrs()[i]; ++j) {
auto loss_chg =
evaluator.Evaluator().CalcSplitGain(param, 0, i - 1, left, right) -
evaluator.Stats().front().root_gain;
ASSERT_GE(best_loss_chg, loss_chg);
left.Add(hist[0][j].GetGrad(), hist[0][j].GetHess());
right.SetSubstract(GradStats{total_gpair}, left);
}
}
omp_set_num_threads(orig);
}
TEST(HistEvaluator, Evaluate) {
TestEvaluateSplits<float>();
TestEvaluateSplits<double>();
}
TEST(HistEvaluator, Apply) {
RegTree tree;
int static constexpr kNRows = 8, kNCols = 16;
TrainParam param;
param.UpdateAllowUnknown(Args{{}});
auto dmat = RandomDataGenerator(kNRows, kNCols, 0).Seed(3).GenerateDMatrix();
auto sampler = std::make_shared<common::ColumnSampler>();
auto evaluator_ =
HistEvaluator<float, CPUExpandEntry>{param, dmat->Info(), 4, sampler};
CPUExpandEntry entry{0, 0, 10.0f};
entry.split.left_sum = GradStats{0.4, 0.6f};
entry.split.right_sum = GradStats{0.5, 0.7f};
evaluator_.ApplyTreeSplit(entry, &tree);
ASSERT_EQ(tree.NumExtraNodes(), 2);
ASSERT_EQ(tree.Stat(tree[0].LeftChild()).sum_hess, 0.6f);
ASSERT_EQ(tree.Stat(tree[0].RightChild()).sum_hess, 0.7f);
}
} // namespace tree
} // namespace xgboost