xgboost/R-package/R/xgboost.R

72 lines
2.5 KiB
R

#' eXtreme Gradient Boosting (Tree) library
#'
#' A simple interface for xgboost in R
#'
#' @param data takes \code{matrix}, \code{dgCMatrix}, local data file or
#' \code{xgb.DMatrix}.
#' @param label the response variable. User should not set this field,
# if data is local data file or \code{xgb.DMatrix}.
#' @param params the list of parameters. Commonly used ones are:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:linear} linear regression
#' \item \code{binary:logistic} logistic regression for classification
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max_depth} maximum depth of the tree
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
#' }
#'
#' See \url{https://github.com/tqchen/xgboost/wiki/Parameters} for
#' further details. See also demo/demo.R for walkthrough example in R.
#' @param nrounds the max number of iterations
#' @param verbose If 0, xgboost will stay silent. If 1, xgboost will print
#' information of performance. If 2, xgboost will print information of both
#' performance and construction progress information
#' @param ... other parameters to pass to \code{params}.
#'
#' @details
#' This is the modeling function for xgboost.
#'
#' Parallelization is automatically enabled if OpenMP is present.
#' Number of threads can also be manually specified via "nthread" parameter
#'
#' @examples
#' data(iris)
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
#' pred <- predict(bst, as.matrix(iris[,1:4]))
#' @export
#'
xgboost <- function(data = NULL, label = NULL, params = list(), nrounds,
verbose = 1, ...) {
inClass <- class(data)
if (inClass == "dgCMatrix" || inClass == "matrix") {
if (is.null(label))
stop("xgboost: need label when data is a matrix")
dtrain <- xgb.DMatrix(data, label = label)
} else {
if (!is.null(label))
warning("xgboost: label will be ignored.")
if (inClass == "character")
dtrain <- xgb.DMatrix(data) else if (inClass == "xgb.DMatrix")
dtrain <- data else stop("xgboost: Invalid input of data")
}
if (verbose > 1) {
silent <- 0
} else {
silent <- 1
}
params <- append(params, list(silent = silent))
params <- append(params, list(...))
if (verbose > 0)
watchlist <- list(train = dtrain) else watchlist <- list()
bst <- xgb.train(params, dtrain, nrounds, watchlist)
return(bst)
}