xgboost/R-package/R/xgb.model.dt.tree.R
2015-11-30 15:47:10 +01:00

156 lines
7.3 KiB
R

#' Convert tree model dump to data.table
#'
#' Read a tree model text dump and return a data.table.
#'
#' @importFrom data.table data.table
#' @importFrom data.table set
#' @importFrom data.table rbindlist
#' @importFrom data.table copy
#' @importFrom data.table :=
#' @importFrom magrittr %>%
#' @importFrom magrittr not
#' @importFrom magrittr add
#' @importFrom stringr str_extract
#' @importFrom stringr str_split
#' @importFrom stringr str_trim
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
#' @param model dump generated by the \code{xgb.train} function. Avoid the creation of a dump file.
#' @param text dump generated by the \code{xgb.dump} function. Avoid the creation of a dump file. Model dump must include the gain per feature and per tree (parameter \code{with.stats = T} in function \code{xgb.dump}).
#' @param n_first_tree limit the plot to the n first trees. If \code{NULL}, all trees of the model are plotted. Performance can be low for huge models.
#'
#' @return A \code{data.table} of the features used in the model with their gain, cover and few other thing.
#'
#' @details
#' General function to convert a text dump of tree model to a Matrix. The purpose is to help user to explore the model and get a better understanding of it.
#'
#' The content of the \code{data.table} is organised that way:
#'
#' \itemize{
#' \item \code{ID}: unique identifier of a node ;
#' \item \code{Feature}: feature used in the tree to operate a split. When Leaf is indicated, it is the end of a branch ;
#' \item \code{Split}: value of the chosen feature where is operated the split ;
#' \item \code{Yes}: ID of the feature for the next node in the branch when the split condition is met ;
#' \item \code{No}: ID of the feature for the next node in the branch when the split condition is not met ;
#' \item \code{Missing}: ID of the feature for the next node in the branch for observation where the feature used for the split are not provided ;
#' \item \code{Quality}: it's the gain related to the split in this specific node ;
#' \item \code{Cover}: metric to measure the number of observation affected by the split ;
#' \item \code{Tree}: ID of the tree. It is included in the main ID ;
#' \item \code{Yes.X} or \code{No.X}: data related to the pointer in \code{Yes} or \code{No} column ;
#' }
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#'
#' #Both dataset are list with two items, a sparse matrix and labels
#' #(labels = outcome column which will be learned).
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
#' train <- agaricus.train
#'
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
#' eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
#'
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
#' xgb.model.dt.tree(feature_names = agaricus.train$data@@Dimnames[[2]], model = bst)
#'
#' @export
xgb.model.dt.tree <- function(feature_names = NULL, model = NULL, text = NULL, n_first_tree = NULL){
if (!class(feature_names) %in% c("character", "NULL")) {
stop("feature_names: Has to be a vector of character or NULL if the model dump already contains feature name. Look at this function documentation to see where to get feature names.")
}
if (class(model) != "xgb.Booster" & class(text) != "character") {
"model: Has to be an object of class xgb.Booster model generaged by the xgb.train function.\n" %>%
paste0("text: Has to be a vector of character or NULL if a path to the model dump has already been provided.") %>%
stop()
}
if (!class(n_first_tree) %in% c("numeric", "NULL") | length(n_first_tree) > 1) {
stop("n_first_tree: Has to be a numeric vector of size 1.")
}
if(is.null(text)){
text <- xgb.dump(model = model, with.stats = T)
}
position <- str_match(text, "booster") %>% is.na %>% not %>% which %>% c(length(text) + 1)
extract <- function(x, pattern) str_extract(x, pattern) %>% str_split("=") %>% lapply(function(x) x[2] %>% as.numeric) %>% unlist
n_round <- min(length(position) - 1, n_first_tree)
addTreeId <- function(x, i) paste(i,x,sep = "-")
allTrees <- data.table()
anynumber_regex <- "[-+]?[0-9]*\\.?[0-9]+([eE][-+]?[0-9]+)?"
for (i in 1:n_round){
tree <- text[(position[i] + 1):(position[i + 1] - 1)]
# avoid tree made of a leaf only (no split)
if(length(tree) < 2) next
treeID <- i - 1
notLeaf <- str_match(tree, "leaf") %>% is.na
leaf <- notLeaf %>% not %>% tree[.]
branch <- notLeaf %>% tree[.]
idBranch <- str_extract(branch, "\\d*:") %>% str_replace(":", "") %>% addTreeId(treeID)
idLeaf <- str_extract(leaf, "\\d*:") %>% str_replace(":", "") %>% addTreeId(treeID)
featureBranch <- str_extract(branch, "f\\d*<") %>% str_replace("<", "") %>% str_replace("f", "") %>% as.numeric
if(!is.null(feature_names)){
featureBranch <- feature_names[featureBranch + 1]
}
featureLeaf <- rep("Leaf", length(leaf))
splitBranch <- str_extract(branch, paste0("<",anynumber_regex,"\\]")) %>% str_replace("<", "") %>% str_replace("\\]", "")
splitLeaf <- rep(NA, length(leaf))
yesBranch <- extract(branch, "yes=\\d*") %>% addTreeId(treeID)
yesLeaf <- rep(NA, length(leaf))
noBranch <- extract(branch, "no=\\d*") %>% addTreeId(treeID)
noLeaf <- rep(NA, length(leaf))
missingBranch <- extract(branch, "missing=\\d+") %>% addTreeId(treeID)
missingLeaf <- rep(NA, length(leaf))
qualityBranch <- extract(branch, paste0("gain=",anynumber_regex))
qualityLeaf <- extract(leaf, paste0("leaf=",anynumber_regex))
coverBranch <- extract(branch, "cover=\\d*\\.*\\d*")
coverLeaf <- extract(leaf, "cover=\\d*\\.*\\d*")
dt <- data.table(ID = c(idBranch, idLeaf), Feature = c(featureBranch, featureLeaf), Split = c(splitBranch, splitLeaf), Yes = c(yesBranch, yesLeaf), No = c(noBranch, noLeaf), Missing = c(missingBranch, missingLeaf), Quality = c(qualityBranch, qualityLeaf), Cover = c(coverBranch, coverLeaf))[order(ID)][,Tree := treeID]
allTrees <- rbindlist(list(allTrees, dt), use.names = T, fill = F)
}
yes <- allTrees[!is.na(Yes), Yes]
set(allTrees, i = which(allTrees[, Feature] != "Leaf"),
j = "Yes.Feature",
value = allTrees[ID %in% yes, Feature])
set(allTrees, i = which(allTrees[, Feature] != "Leaf"),
j = "Yes.Cover",
value = allTrees[ID %in% yes, Cover])
set(allTrees, i = which(allTrees[, Feature] != "Leaf"),
j = "Yes.Quality",
value = allTrees[ID %in% yes, Quality])
no <- allTrees[!is.na(No), No]
set(allTrees, i = which(allTrees[, Feature] != "Leaf"),
j = "No.Feature",
value = allTrees[ID %in% no, Feature])
set(allTrees, i = which(allTrees[, Feature] != "Leaf"),
j = "No.Cover",
value = allTrees[ID %in% no, Cover])
set(allTrees, i = which(allTrees[, Feature] != "Leaf"),
j = "No.Quality",
value = allTrees[ID %in% no, Quality])
allTrees
}
# Avoid error messages during CRAN check.
# The reason is that these variables are never declared
# They are mainly column names inferred by Data.table...
globalVariables(c("ID", "Tree", "Yes", ".", ".N", "Feature", "Cover", "Quality", "No", "Gain", "Frequency"))