* Replace all uses of deprecated function sklearn.datasets.load_boston * More renaming * Fix bad name * Update assertion * Fix n boosted rounds. * Avoid over regularization. * Rebase. * Avoid over regularization. * Whac-a-mole Co-authored-by: fis <jm.yuan@outlook.com>
74 lines
2.5 KiB
Python
74 lines
2.5 KiB
Python
'''
|
|
Collection of examples for using sklearn interface
|
|
==================================================
|
|
|
|
Created on 1 Apr 2015
|
|
|
|
@author: Jamie Hall
|
|
'''
|
|
import pickle
|
|
import xgboost as xgb
|
|
|
|
import numpy as np
|
|
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
|
|
from sklearn.metrics import confusion_matrix, mean_squared_error
|
|
from sklearn.datasets import load_iris, load_digits, fetch_california_housing
|
|
|
|
rng = np.random.RandomState(31337)
|
|
|
|
print("Zeros and Ones from the Digits dataset: binary classification")
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X):
|
|
xgb_model = xgb.XGBClassifier(n_jobs=1).fit(X[train_index], y[train_index])
|
|
predictions = xgb_model.predict(X[test_index])
|
|
actuals = y[test_index]
|
|
print(confusion_matrix(actuals, predictions))
|
|
|
|
print("Iris: multiclass classification")
|
|
iris = load_iris()
|
|
y = iris['target']
|
|
X = iris['data']
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X):
|
|
xgb_model = xgb.XGBClassifier(n_jobs=1).fit(X[train_index], y[train_index])
|
|
predictions = xgb_model.predict(X[test_index])
|
|
actuals = y[test_index]
|
|
print(confusion_matrix(actuals, predictions))
|
|
|
|
print("California Housing: regression")
|
|
X, y = fetch_california_housing(return_X_y=True)
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X):
|
|
xgb_model = xgb.XGBRegressor(n_jobs=1).fit(X[train_index], y[train_index])
|
|
predictions = xgb_model.predict(X[test_index])
|
|
actuals = y[test_index]
|
|
print(mean_squared_error(actuals, predictions))
|
|
|
|
print("Parameter optimization")
|
|
xgb_model = xgb.XGBRegressor(n_jobs=1)
|
|
clf = GridSearchCV(xgb_model,
|
|
{'max_depth': [2, 4, 6],
|
|
'n_estimators': [50, 100, 200]}, verbose=1, n_jobs=1)
|
|
clf.fit(X, y)
|
|
print(clf.best_score_)
|
|
print(clf.best_params_)
|
|
|
|
# The sklearn API models are picklable
|
|
print("Pickling sklearn API models")
|
|
# must open in binary format to pickle
|
|
pickle.dump(clf, open("best_calif.pkl", "wb"))
|
|
clf2 = pickle.load(open("best_calif.pkl", "rb"))
|
|
print(np.allclose(clf.predict(X), clf2.predict(X)))
|
|
|
|
# Early-stopping
|
|
|
|
X = digits['data']
|
|
y = digits['target']
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
|
clf = xgb.XGBClassifier(n_jobs=1)
|
|
clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
|
eval_set=[(X_test, y_test)])
|