287 lines
7.7 KiB
Python
287 lines
7.7 KiB
Python
"""XGBoost collective communication related API."""
|
|
|
|
import ctypes
|
|
import logging
|
|
import os
|
|
import pickle
|
|
from enum import IntEnum, unique
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import numpy as np
|
|
|
|
from ._typing import _T
|
|
from .core import _LIB, _check_call, build_info, c_str, make_jcargs, py_str
|
|
|
|
LOGGER = logging.getLogger("[xgboost.collective]")
|
|
|
|
|
|
def init(**args: Any) -> None:
|
|
"""Initialize the collective library with arguments.
|
|
|
|
Parameters
|
|
----------
|
|
args :
|
|
Keyword arguments representing the parameters and their values.
|
|
|
|
Accepted parameters:
|
|
- dmlc_communicator: The type of the communicator.
|
|
* rabit: Use Rabit. This is the default if the type is unspecified.
|
|
* federated: Use the gRPC interface for Federated Learning.
|
|
|
|
Only applicable to the Rabit communicator:
|
|
- dmlc_tracker_uri: Hostname of the tracker.
|
|
- dmlc_tracker_port: Port number of the tracker.
|
|
- dmlc_task_id: ID of the current task, can be used to obtain deterministic
|
|
- dmlc_retry: The number of retry when handling network errors.
|
|
- dmlc_timeout: Timeout in seconds.
|
|
- dmlc_nccl_path: Path to load (dlopen) nccl for GPU-based communication.
|
|
|
|
Only applicable to the Federated communicator (use upper case for environment
|
|
variables, use lower case for runtime configuration):
|
|
|
|
- federated_server_address: Address of the federated server.
|
|
- federated_world_size: Number of federated workers.
|
|
- federated_rank: Rank of the current worker.
|
|
- federated_server_cert: Server certificate file path. Only needed for the SSL
|
|
mode.
|
|
- federated_client_key: Client key file path. Only needed for the SSL mode.
|
|
- federated_client_cert: Client certificate file path. Only needed for the SSL
|
|
mode.
|
|
"""
|
|
_check_call(_LIB.XGCommunicatorInit(make_jcargs(**args)))
|
|
|
|
|
|
def finalize() -> None:
|
|
"""Finalize the communicator."""
|
|
_check_call(_LIB.XGCommunicatorFinalize())
|
|
|
|
|
|
def get_rank() -> int:
|
|
"""Get rank of current process.
|
|
|
|
Returns
|
|
-------
|
|
rank : int
|
|
Rank of current process.
|
|
"""
|
|
ret = _LIB.XGCommunicatorGetRank()
|
|
return ret
|
|
|
|
|
|
def get_world_size() -> int:
|
|
"""Get total number workers.
|
|
|
|
Returns
|
|
-------
|
|
n : int
|
|
Total number of process.
|
|
"""
|
|
ret = _LIB.XGCommunicatorGetWorldSize()
|
|
return ret
|
|
|
|
|
|
def is_distributed() -> int:
|
|
"""If the collective communicator is distributed."""
|
|
is_dist = _LIB.XGCommunicatorIsDistributed()
|
|
return is_dist
|
|
|
|
|
|
def communicator_print(msg: Any) -> None:
|
|
"""Print message to the communicator.
|
|
|
|
This function can be used to communicate the information of
|
|
the progress to the communicator.
|
|
|
|
Parameters
|
|
----------
|
|
msg : str
|
|
The message to be printed to the communicator.
|
|
"""
|
|
if not isinstance(msg, str):
|
|
msg = str(msg)
|
|
is_dist = _LIB.XGCommunicatorIsDistributed()
|
|
if is_dist != 0:
|
|
_check_call(_LIB.XGCommunicatorPrint(c_str(msg.strip())))
|
|
else:
|
|
print(msg.strip(), flush=True)
|
|
|
|
|
|
def get_processor_name() -> str:
|
|
"""Get the processor name.
|
|
|
|
Returns
|
|
-------
|
|
name : str
|
|
the name of processor(host)
|
|
"""
|
|
name_str = ctypes.c_char_p()
|
|
_check_call(_LIB.XGCommunicatorGetProcessorName(ctypes.byref(name_str)))
|
|
value = name_str.value
|
|
assert value
|
|
return py_str(value)
|
|
|
|
|
|
def broadcast(data: _T, root: int) -> _T:
|
|
"""Broadcast object from one node to all other nodes.
|
|
|
|
Parameters
|
|
----------
|
|
data : any type that can be pickled
|
|
Input data, if current rank does not equal root, this can be None
|
|
root : int
|
|
Rank of the node to broadcast data from.
|
|
|
|
Returns
|
|
-------
|
|
object : int
|
|
the result of broadcast.
|
|
"""
|
|
rank = get_rank()
|
|
length = ctypes.c_ulong()
|
|
if root == rank:
|
|
assert data is not None, "need to pass in data when broadcasting"
|
|
s = pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL)
|
|
length.value = len(s)
|
|
# Run first broadcast
|
|
_check_call(
|
|
_LIB.XGCommunicatorBroadcast(
|
|
ctypes.byref(length), ctypes.sizeof(ctypes.c_ulong), root
|
|
)
|
|
)
|
|
if root != rank:
|
|
dptr = (ctypes.c_char * length.value)()
|
|
# run second
|
|
_check_call(
|
|
_LIB.XGCommunicatorBroadcast(
|
|
ctypes.cast(dptr, ctypes.c_void_p), length.value, root
|
|
)
|
|
)
|
|
data = pickle.loads(dptr.raw)
|
|
del dptr
|
|
else:
|
|
_check_call(
|
|
_LIB.XGCommunicatorBroadcast(
|
|
ctypes.cast(ctypes.c_char_p(s), ctypes.c_void_p), length.value, root
|
|
)
|
|
)
|
|
del s
|
|
return data
|
|
|
|
|
|
# enumeration of dtypes
|
|
def _map_dtype(dtype: np.dtype) -> int:
|
|
dtype_map = {
|
|
np.dtype("float16"): 0,
|
|
np.dtype("float32"): 1,
|
|
np.dtype("float64"): 2,
|
|
np.dtype("int8"): 4,
|
|
np.dtype("int16"): 5,
|
|
np.dtype("int32"): 6,
|
|
np.dtype("int64"): 7,
|
|
np.dtype("uint8"): 8,
|
|
np.dtype("uint16"): 9,
|
|
np.dtype("uint32"): 10,
|
|
np.dtype("uint64"): 11,
|
|
}
|
|
try:
|
|
dtype_map.update({np.dtype("float128"): 3})
|
|
except TypeError: # float128 doesn't exist on the system
|
|
pass
|
|
|
|
if dtype not in dtype_map:
|
|
raise TypeError(f"data type {dtype} is not supported on the current platform.")
|
|
|
|
return dtype_map[dtype]
|
|
|
|
|
|
@unique
|
|
class Op(IntEnum):
|
|
"""Supported operations for allreduce."""
|
|
|
|
MAX = 0
|
|
MIN = 1
|
|
SUM = 2
|
|
BITWISE_AND = 3
|
|
BITWISE_OR = 4
|
|
BITWISE_XOR = 5
|
|
|
|
|
|
def allreduce(data: np.ndarray, op: Op) -> np.ndarray: # pylint:disable=invalid-name
|
|
"""Perform allreduce, return the result.
|
|
|
|
Parameters
|
|
----------
|
|
data :
|
|
Input data.
|
|
op :
|
|
Reduction operator.
|
|
|
|
Returns
|
|
-------
|
|
result :
|
|
The result of allreduce, have same shape as data
|
|
|
|
Notes
|
|
-----
|
|
This function is not thread-safe.
|
|
"""
|
|
if not isinstance(data, np.ndarray):
|
|
raise TypeError("allreduce only takes in numpy.ndarray")
|
|
buf = data.ravel().copy()
|
|
_check_call(
|
|
_LIB.XGCommunicatorAllreduce(
|
|
buf.ctypes.data_as(ctypes.c_void_p),
|
|
buf.size,
|
|
_map_dtype(buf.dtype),
|
|
int(op),
|
|
)
|
|
)
|
|
return buf
|
|
|
|
|
|
def signal_error() -> None:
|
|
"""Kill the process."""
|
|
_check_call(_LIB.XGCommunicatorSignalError())
|
|
|
|
|
|
class CommunicatorContext:
|
|
"""A context controlling collective communicator initialization and finalization."""
|
|
|
|
def __init__(self, **args: Any) -> None:
|
|
self.args = args
|
|
key = "dmlc_nccl_path"
|
|
if args.get(key, None) is not None:
|
|
return
|
|
|
|
binfo = build_info()
|
|
if not binfo["USE_DLOPEN_NCCL"]:
|
|
return
|
|
|
|
try:
|
|
# PyPI package of NCCL.
|
|
from nvidia.nccl import lib
|
|
|
|
# There are two versions of nvidia-nccl, one is from PyPI, another one from
|
|
# nvidia-pyindex. We support only the first one as the second one is too old
|
|
# (2.9.8 as of writing).
|
|
if lib.__file__ is not None:
|
|
dirname: Optional[str] = os.path.dirname(lib.__file__)
|
|
else:
|
|
dirname = None
|
|
|
|
if dirname:
|
|
path = os.path.join(dirname, "libnccl.so.2")
|
|
self.args[key] = path
|
|
except ImportError:
|
|
pass
|
|
|
|
def __enter__(self) -> Dict[str, Any]:
|
|
init(**self.args)
|
|
assert is_distributed()
|
|
LOGGER.debug("-------------- communicator say hello ------------------")
|
|
return self.args
|
|
|
|
def __exit__(self, *args: List) -> None:
|
|
finalize()
|
|
LOGGER.debug("--------------- communicator say bye ------------------")
|