xgboost/tests/cpp/tree/test_column_split.h
2024-07-12 01:07:12 +08:00

80 lines
2.8 KiB
C++

/**
* Copyright 2023-2024, XGBoost Contributors
*/
#pragma once
#include <xgboost/data.h> // for FeatureType, DMatrix
#include <xgboost/tree_model.h> // for RegTree
#include <xgboost/tree_updater.h> // for TreeUpdater
#include <cstddef> // for size_t
#include <memory> // for shared_ptr
#include <vector> // for vector
#include "../../../src/tree/param.h" // for TrainParam
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h" // for RandomDataGenerator
namespace xgboost::tree {
inline std::shared_ptr<DMatrix> GenerateCatDMatrix(std::size_t rows, std::size_t cols,
float sparsity, bool categorical) {
if (categorical) {
std::vector<FeatureType> ft(cols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 3 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
return RandomDataGenerator(rows, cols, 0.6f).Seed(3).Type(ft).MaxCategory(17).GenerateDMatrix();
} else {
return RandomDataGenerator{rows, cols, 0.6f}.Seed(3).GenerateDMatrix();
}
}
inline void TestColumnSplit(bst_target_t n_targets, bool categorical, std::string name,
float sparsity) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;
RegTree expected_tree{n_targets, static_cast<bst_feature_t>(kCols)};
ObjInfo task{ObjInfo::kRegression};
Context ctx;
{
auto p_dmat = GenerateCatDMatrix(kRows, kCols, sparsity, categorical);
auto gpair = GenerateRandomGradients(&ctx, kRows, n_targets);
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create(name, &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, p_dmat.get(), position, {&expected_tree});
}
auto verify = [&] {
Context ctx;
auto p_dmat = GenerateCatDMatrix(kRows, kCols, sparsity, categorical);
auto gpair = GenerateRandomGradients(&ctx, kRows, n_targets);
ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create(name, &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
std::unique_ptr<DMatrix> sliced{
p_dmat->SliceCol(collective::GetWorldSize(), collective::GetRank())};
RegTree tree{n_targets, static_cast<bst_feature_t>(kCols)};
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, sliced.get(), position, {&tree});
Json json{Object{}};
tree.SaveModel(&json);
Json expected_json{Object{}};
expected_tree.SaveModel(&expected_json);
ASSERT_EQ(json, expected_json);
};
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, [&] { verify(); });
}
} // namespace xgboost::tree