173 lines
5.4 KiB
Plaintext

/*!
* Copyright 2016 Rory mitchell
*/
#pragma once
#include <vector>
#include "../../../src/common/random.h"
#include "../../../src/tree/param.h"
#include "device_helpers.cuh"
#include "types.cuh"
namespace xgboost {
namespace tree {
// When we split on a value which has no left neighbour, define its left
// neighbour as having left_fvalue = current_fvalue - FVALUE_EPS
// This produces a split value slightly lower than the current instance
#define FVALUE_EPS 0.0001
__device__ inline float device_calc_loss_chg(const GPUTrainingParam& param,
const gpu_gpair& scan,
const gpu_gpair& missing,
const gpu_gpair& parent_sum,
const float& parent_gain,
bool missing_left) {
gpu_gpair left = scan;
if (missing_left) {
left += missing;
}
gpu_gpair right = parent_sum - left;
float left_gain = CalcGain(param, left.grad(), left.hess());
float right_gain = CalcGain(param, right.grad(), right.hess());
return left_gain + right_gain - parent_gain;
}
__device__ float inline loss_chg_missing(const gpu_gpair& scan,
const gpu_gpair& missing,
const gpu_gpair& parent_sum,
const float& parent_gain,
const GPUTrainingParam& param,
bool& missing_left_out) { // NOLINT
float missing_left_loss =
device_calc_loss_chg(param, scan, missing, parent_sum, parent_gain, true);
float missing_right_loss = device_calc_loss_chg(
param, scan, missing, parent_sum, parent_gain, false);
if (missing_left_loss >= missing_right_loss) {
missing_left_out = true;
return missing_left_loss;
} else {
missing_left_out = false;
return missing_right_loss;
}
}
// Total number of nodes in tree, given depth
__host__ __device__ inline int n_nodes(int depth) {
return (1 << (depth + 1)) - 1;
}
// Number of nodes at this level of the tree
__host__ __device__ inline int n_nodes_level(int depth) { return 1 << depth; }
// Whether a node is currently being processed at current depth
__host__ __device__ inline bool is_active(int nidx, int depth) {
return nidx >= n_nodes(depth - 1);
}
__host__ __device__ inline int parent_nidx(int nidx) { return (nidx - 1) / 2; }
__host__ __device__ inline int left_child_nidx(int nidx) {
return nidx * 2 + 1;
}
__host__ __device__ inline int right_child_nidx(int nidx) {
return nidx * 2 + 2;
}
__host__ __device__ inline bool is_left_child(int nidx) {
return nidx % 2 == 1;
}
enum NodeType {
NODE = 0,
LEAF = 1,
UNUSED = 2,
};
// Recursively label node types
inline void flag_nodes(const thrust::host_vector<Node>& nodes,
std::vector<NodeType>* node_flags, int nid,
NodeType type) {
if (nid >= nodes.size() || type == UNUSED) {
return;
}
const Node& n = nodes[nid];
// Current node and all children are valid
if (n.split.loss_chg > rt_eps) {
(*node_flags)[nid] = NODE;
flag_nodes(nodes, node_flags, nid * 2 + 1, NODE);
flag_nodes(nodes, node_flags, nid * 2 + 2, NODE);
} else {
// Current node is leaf, therefore is valid but all children are invalid
(*node_flags)[nid] = LEAF;
flag_nodes(nodes, node_flags, nid * 2 + 1, UNUSED);
flag_nodes(nodes, node_flags, nid * 2 + 2, UNUSED);
}
}
// Copy gpu dense representation of tree to xgboost sparse representation
inline void dense2sparse_tree(RegTree* p_tree,
thrust::device_ptr<Node> nodes_begin,
thrust::device_ptr<Node> nodes_end,
const TrainParam& param) {
RegTree& tree = *p_tree;
thrust::host_vector<Node> h_nodes(nodes_begin, nodes_end);
std::vector<NodeType> node_flags(h_nodes.size(), UNUSED);
flag_nodes(h_nodes, &node_flags, 0, NODE);
int nid = 0;
for (int gpu_nid = 0; gpu_nid < h_nodes.size(); gpu_nid++) {
NodeType flag = node_flags[gpu_nid];
const Node& n = h_nodes[gpu_nid];
if (flag == NODE) {
tree.AddChilds(nid);
tree[nid].set_split(n.split.findex, n.split.fvalue, n.split.missing_left);
tree.stat(nid).loss_chg = n.split.loss_chg;
tree.stat(nid).base_weight = n.weight;
tree.stat(nid).sum_hess = n.sum_gradients.hess();
tree[tree[nid].cleft()].set_leaf(0);
tree[tree[nid].cright()].set_leaf(0);
nid++;
} else if (flag == LEAF) {
tree[nid].set_leaf(n.weight * param.learning_rate);
tree.stat(nid).sum_hess = n.sum_gradients.hess();
nid++;
}
}
}
// Set gradient pair to 0 with p = 1 - subsample
inline void subsample_gpair(dh::dvec<gpu_gpair>* p_gpair, float subsample) {
if (subsample == 1.0) {
return;
}
dh::dvec<gpu_gpair>& gpair = *p_gpair;
auto d_gpair = gpair.data();
dh::BernoulliRng rng(subsample, common::GlobalRandom()());
dh::launch_n(gpair.size(), [=] __device__(int i) {
if (!rng(i)) {
d_gpair[i] = gpu_gpair();
}
});
}
inline std::vector<int> col_sample(std::vector<int> features, float colsample) {
int n = colsample * features.size();
CHECK_GT(n, 0);
std::shuffle(features.begin(), features.end(), common::GlobalRandom());
features.resize(n);
return features;
}
} // namespace tree
} // namespace xgboost