xgboost/plugin/updater_gpu/test/cpp/argmax_by_key.cu
Thejaswi 85b2fb3eee [GPU-Plugin] Integration of a faster version of grow_gpu plugin into mainstream (#2360)
* Integrating a faster version of grow_gpu plugin
1. Removed the older files to reduce duplication
2. Moved all of the grow_gpu files under 'exact' folder
3. All of them are inside 'exact' namespace to avoid any conflicts
4. Fixed a bug in benchmark.py while running only 'grow_gpu' plugin
5. Added cub and googletest submodules to ease integration and unit-testing
6. Updates to CMakeLists.txt to directly build cuda objects into libxgboost

* Added support for building gpu plugins through make flow
1. updated makefile and config.mk to add right targets
2. added unit-tests for gpu exact plugin code

* 1. Added support for building gpu plugin using 'make' flow as well
2. Updated instructions for building and testing gpu plugin

* Fix travis-ci errors for PR#2360
1. lint errors on unit-tests
2. removed googletest, instead depended upon dmlc-core provide gtest cache

* Some more fixes to travis-ci lint failures PR#2360

* Added Rory's copyrights to the files containing code from both.

* updated copyright statement as per Rory's request

* moved the static datasets into a script to generate them at runtime

* 1. memory usage print when silent=0
2. tests/ and test/ folder organization
3. removal of the dependency of googletest for just building xgboost
4. coding style updates for .cuh as well

* Fixes for compilation warnings

* add cuda object files as well when JVM_BINDINGS=ON
2017-06-06 09:39:53 +12:00

129 lines
3.8 KiB
Plaintext

/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gtest/gtest.h"
#include "../../src/exact/argmax_by_key.cuh"
#include "../../src/exact/gradients.cuh"
#include "../../src/exact/node.cuh"
#include "../../src/exact/loss_functions.cuh"
#include "utils.cuh"
namespace xgboost {
namespace tree {
namespace exact {
TEST(ArgMaxByKey, maxSplit) {
Split a, b, out;
a.score = 2.f;
a.index = 3;
b.score = 3.f;
b.index = 4;
out = maxSplit(a, b);
EXPECT_FLOAT_EQ(out.score, b.score);
EXPECT_EQ(out.index, b.index);
b.score = 2.f;
b.index = 4;
out = maxSplit(a, b);
EXPECT_FLOAT_EQ(out.score, a.score);
EXPECT_EQ(out.index, a.index);
b.score = 2.f;
b.index = 2;
out = maxSplit(a, b);
EXPECT_FLOAT_EQ(out.score, a.score);
EXPECT_EQ(out.index, b.index);
b.score = 1.f;
b.index = 1;
out = maxSplit(a, b);
EXPECT_FLOAT_EQ(out.score, a.score);
EXPECT_EQ(out.index, a.index);
}
template <typename node_id_t>
void argMaxTest(ArgMaxByKeyAlgo algo) {
const int nVals = 1024;
const int level = 0;
const int nKeys = 1 << level;
gpu_gpair* scans = new gpu_gpair[nVals];
float* vals = new float[nVals];
int* colIds = new int[nVals];
scans[0] = gpu_gpair();
vals[0] = 0.f;
colIds[0] = 0;
for (int i = 1; i < nVals; ++i) {
scans[i].g = scans[i-1].g + (0.1f * 2.f);
scans[i].h = scans[i-1].h + (0.1f * 2.f);
vals[i] = static_cast<float>(i) * 0.1f;
colIds[i] = 0;
}
float* dVals;
allocateAndUpdateOnGpu<float>(dVals, vals, nVals);
gpu_gpair* dScans;
allocateAndUpdateOnGpu<gpu_gpair>(dScans, scans, nVals);
gpu_gpair* sums = new gpu_gpair[nKeys];
sums[0].g = sums[0].h = (0.1f * 2.f * nVals);
gpu_gpair* dSums;
allocateAndUpdateOnGpu<gpu_gpair>(dSums, sums, nKeys);
int* dColIds;
allocateAndUpdateOnGpu<int>(dColIds, colIds, nVals);
Split* splits = new Split[nKeys];
Split* dSplits;
allocateOnGpu<Split>(dSplits, nKeys);
node_id_t* nodeAssigns = new node_id_t[nVals];
memset(nodeAssigns, 0, sizeof(node_id_t)*nVals);
node_id_t* dNodeAssigns;
allocateAndUpdateOnGpu<node_id_t>(dNodeAssigns, nodeAssigns, nVals);
Node<node_id_t>* nodes = new Node<node_id_t>[nKeys];
nodes[0].gradSum = sums[0];
nodes[0].id = 0;
TrainParam param;
param.min_child_weight = 0.0f;
param.reg_alpha = 0.f;
param.reg_lambda = 2.f;
param.max_delta_step = 0.f;
nodes[0].score = CalcGain(param, sums[0].g, sums[0].h);
Node<node_id_t>* dNodes;
allocateAndUpdateOnGpu<Node<node_id_t> >(dNodes, nodes, nKeys);
argMaxByKey<node_id_t>(dSplits, dScans, dSums, dVals, dColIds, dNodeAssigns,
dNodes, nKeys, 0, nVals, param, algo);
updateHostPtr<Split>(splits, dSplits, nKeys);
EXPECT_FLOAT_EQ(0.f, splits->score);
EXPECT_EQ(0, splits->index);
dh::safe_cuda(cudaFree(dNodeAssigns));
delete [] nodeAssigns;
dh::safe_cuda(cudaFree(dSplits));
delete [] splits;
dh::safe_cuda(cudaFree(dColIds));
delete [] colIds;
dh::safe_cuda(cudaFree(dSums));
delete [] sums;
dh::safe_cuda(cudaFree(dVals));
delete [] vals;
dh::safe_cuda(cudaFree(dScans));
delete [] scans;
}
TEST(ArgMaxByKey, testOneColGmem) {
argMaxTest<int16_t>(ABK_GMEM);
}
TEST(ArgMaxByKey, testOneColSmem) {
argMaxTest<int16_t>(ABK_SMEM);
}
} // namespace exact
} // namespace tree
} // namespace xgboost