553 lines
22 KiB
C++
553 lines
22 KiB
C++
/*!
|
|
* Copyright by Contributors 2017-2021
|
|
*/
|
|
#include <dmlc/omp.h>
|
|
#include <dmlc/any.h>
|
|
|
|
#include <cstddef>
|
|
#include <limits>
|
|
#include <mutex>
|
|
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/data.h"
|
|
#include "xgboost/predictor.h"
|
|
#include "xgboost/tree_model.h"
|
|
#include "xgboost/tree_updater.h"
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/host_device_vector.h"
|
|
|
|
#include "predict_fn.h"
|
|
#include "../data/adapter.h"
|
|
#include "../common/math.h"
|
|
#include "../common/threading_utils.h"
|
|
#include "../common/categorical.h"
|
|
#include "../gbm/gbtree_model.h"
|
|
|
|
namespace xgboost {
|
|
namespace predictor {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(cpu_predictor);
|
|
|
|
template <bool has_missing, bool has_categorical>
|
|
bst_node_t GetLeafIndex(RegTree const &tree, const RegTree::FVec &feat,
|
|
RegTree::CategoricalSplitMatrix const& cats) {
|
|
bst_node_t nid = 0;
|
|
while (!tree[nid].IsLeaf()) {
|
|
unsigned split_index = tree[nid].SplitIndex();
|
|
auto fvalue = feat.GetFvalue(split_index);
|
|
nid = GetNextNode<has_missing, has_categorical>(
|
|
tree[nid], nid, fvalue, has_missing && feat.IsMissing(split_index), cats);
|
|
}
|
|
return nid;
|
|
}
|
|
|
|
bst_float PredValue(const SparsePage::Inst &inst,
|
|
const std::vector<std::unique_ptr<RegTree>> &trees,
|
|
const std::vector<int> &tree_info, int bst_group,
|
|
RegTree::FVec *p_feats, unsigned tree_begin,
|
|
unsigned tree_end) {
|
|
bst_float psum = 0.0f;
|
|
p_feats->Fill(inst);
|
|
for (size_t i = tree_begin; i < tree_end; ++i) {
|
|
if (tree_info[i] == bst_group) {
|
|
auto const &tree = *trees[i];
|
|
bool has_categorical = tree.HasCategoricalSplit();
|
|
auto cats = tree.GetCategoriesMatrix();
|
|
bst_node_t nidx = -1;
|
|
if (has_categorical) {
|
|
nidx = GetLeafIndex<true, true>(tree, *p_feats, cats);
|
|
} else {
|
|
nidx = GetLeafIndex<true, false>(tree, *p_feats, cats);
|
|
}
|
|
psum += (*trees[i])[nidx].LeafValue();
|
|
}
|
|
}
|
|
p_feats->Drop(inst);
|
|
return psum;
|
|
}
|
|
|
|
template <bool has_categorical>
|
|
bst_float
|
|
PredValueByOneTree(const RegTree::FVec &p_feats, RegTree const &tree,
|
|
RegTree::CategoricalSplitMatrix const& cats) {
|
|
const bst_node_t leaf = p_feats.HasMissing() ?
|
|
GetLeafIndex<true, has_categorical>(tree, p_feats, cats) :
|
|
GetLeafIndex<false, has_categorical>(tree, p_feats, cats);
|
|
return tree[leaf].LeafValue();
|
|
}
|
|
|
|
void PredictByAllTrees(gbm::GBTreeModel const &model, const size_t tree_begin,
|
|
const size_t tree_end, std::vector<bst_float> *out_preds,
|
|
const size_t predict_offset, const size_t num_group,
|
|
const std::vector<RegTree::FVec> &thread_temp,
|
|
const size_t offset, const size_t block_size) {
|
|
std::vector<bst_float> &preds = *out_preds;
|
|
for (size_t tree_id = tree_begin; tree_id < tree_end; ++tree_id) {
|
|
const size_t gid = model.tree_info[tree_id];
|
|
auto const &tree = *model.trees[tree_id];
|
|
auto const& cats = tree.GetCategoriesMatrix();
|
|
auto has_categorical = tree.HasCategoricalSplit();
|
|
|
|
if (has_categorical) {
|
|
for (size_t i = 0; i < block_size; ++i) {
|
|
preds[(predict_offset + i) * num_group + gid] +=
|
|
PredValueByOneTree<true>(thread_temp[offset + i], tree, cats);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < block_size; ++i) {
|
|
preds[(predict_offset + i) * num_group + gid] +=
|
|
PredValueByOneTree<false>(thread_temp[offset + i], tree, cats);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DataView>
|
|
void FVecFill(const size_t block_size, const size_t batch_offset, const int num_feature,
|
|
DataView* batch, const size_t fvec_offset, std::vector<RegTree::FVec>* p_feats) {
|
|
for (size_t i = 0; i < block_size; ++i) {
|
|
RegTree::FVec &feats = (*p_feats)[fvec_offset + i];
|
|
if (feats.Size() == 0) {
|
|
feats.Init(num_feature);
|
|
}
|
|
const SparsePage::Inst inst = (*batch)[batch_offset + i];
|
|
feats.Fill(inst);
|
|
}
|
|
}
|
|
|
|
template <typename DataView>
|
|
void FVecDrop(const size_t block_size, const size_t batch_offset, DataView* batch,
|
|
const size_t fvec_offset, std::vector<RegTree::FVec>* p_feats) {
|
|
for (size_t i = 0; i < block_size; ++i) {
|
|
RegTree::FVec &feats = (*p_feats)[fvec_offset + i];
|
|
const SparsePage::Inst inst = (*batch)[batch_offset + i];
|
|
feats.Drop(inst);
|
|
}
|
|
}
|
|
|
|
template <size_t kUnrollLen = 8>
|
|
struct SparsePageView {
|
|
bst_row_t base_rowid;
|
|
HostSparsePageView view;
|
|
static size_t constexpr kUnroll = kUnrollLen;
|
|
|
|
explicit SparsePageView(SparsePage const *p)
|
|
: base_rowid{p->base_rowid} {
|
|
view = p->GetView();
|
|
}
|
|
SparsePage::Inst operator[](size_t i) { return view[i]; }
|
|
size_t Size() const { return view.Size(); }
|
|
};
|
|
|
|
template <typename Adapter, size_t kUnrollLen = 8>
|
|
class AdapterView {
|
|
Adapter* adapter_;
|
|
float missing_;
|
|
common::Span<Entry> workspace_;
|
|
std::vector<size_t> current_unroll_;
|
|
|
|
public:
|
|
static size_t constexpr kUnroll = kUnrollLen;
|
|
|
|
public:
|
|
explicit AdapterView(Adapter *adapter, float missing, common::Span<Entry> workplace,
|
|
int32_t n_threads)
|
|
: adapter_{adapter},
|
|
missing_{missing},
|
|
workspace_{workplace},
|
|
current_unroll_(n_threads > 0 ? n_threads : 1, 0) {}
|
|
SparsePage::Inst operator[](size_t i) {
|
|
bst_feature_t columns = adapter_->NumColumns();
|
|
auto const &batch = adapter_->Value();
|
|
auto row = batch.GetLine(i);
|
|
auto t = omp_get_thread_num();
|
|
auto const beg = (columns * kUnroll * t) + (current_unroll_[t] * columns);
|
|
size_t non_missing {beg};
|
|
for (size_t c = 0; c < row.Size(); ++c) {
|
|
auto e = row.GetElement(c);
|
|
if (missing_ != e.value && !common::CheckNAN(e.value)) {
|
|
workspace_[non_missing] =
|
|
Entry{static_cast<bst_feature_t>(e.column_idx), e.value};
|
|
++non_missing;
|
|
}
|
|
}
|
|
auto ret = workspace_.subspan(beg, non_missing - beg);
|
|
current_unroll_[t]++;
|
|
if (current_unroll_[t] == kUnroll) {
|
|
current_unroll_[t] = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
size_t Size() const { return adapter_->NumRows(); }
|
|
|
|
bst_row_t const static base_rowid = 0; // NOLINT
|
|
};
|
|
|
|
template <typename DataView, size_t block_of_rows_size>
|
|
void PredictBatchByBlockOfRowsKernel(
|
|
DataView batch, std::vector<bst_float> *out_preds,
|
|
gbm::GBTreeModel const &model, int32_t tree_begin, int32_t tree_end,
|
|
std::vector<RegTree::FVec> *p_thread_temp, int32_t n_threads) {
|
|
auto &thread_temp = *p_thread_temp;
|
|
int32_t const num_group = model.learner_model_param->num_output_group;
|
|
|
|
CHECK_EQ(model.param.size_leaf_vector, 0)
|
|
<< "size_leaf_vector is enforced to 0 so far";
|
|
// parallel over local batch
|
|
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
|
const int num_feature = model.learner_model_param->num_feature;
|
|
omp_ulong n_blocks = common::DivRoundUp(nsize, block_of_rows_size);
|
|
|
|
common::ParallelFor(n_blocks, n_threads, [&](bst_omp_uint block_id) {
|
|
const size_t batch_offset = block_id * block_of_rows_size;
|
|
const size_t block_size =
|
|
std::min(nsize - batch_offset, block_of_rows_size);
|
|
const size_t fvec_offset = omp_get_thread_num() * block_of_rows_size;
|
|
|
|
FVecFill(block_size, batch_offset, num_feature, &batch, fvec_offset,
|
|
p_thread_temp);
|
|
// process block of rows through all trees to keep cache locality
|
|
PredictByAllTrees(model, tree_begin, tree_end, out_preds,
|
|
batch_offset + batch.base_rowid, num_group, thread_temp,
|
|
fvec_offset, block_size);
|
|
FVecDrop(block_size, batch_offset, &batch, fvec_offset, p_thread_temp);
|
|
});
|
|
}
|
|
|
|
float FillNodeMeanValues(RegTree const *tree, bst_node_t nidx, std::vector<float> *mean_values) {
|
|
bst_float result;
|
|
auto &node = (*tree)[nidx];
|
|
auto &node_mean_values = *mean_values;
|
|
if (node.IsLeaf()) {
|
|
result = node.LeafValue();
|
|
} else {
|
|
result = FillNodeMeanValues(tree, node.LeftChild(), mean_values) *
|
|
tree->Stat(node.LeftChild()).sum_hess;
|
|
result += FillNodeMeanValues(tree, node.RightChild(), mean_values) *
|
|
tree->Stat(node.RightChild()).sum_hess;
|
|
result /= tree->Stat(nidx).sum_hess;
|
|
}
|
|
node_mean_values[nidx] = result;
|
|
return result;
|
|
}
|
|
|
|
void FillNodeMeanValues(RegTree const* tree, std::vector<float>* mean_values) {
|
|
size_t num_nodes = tree->param.num_nodes;
|
|
if (mean_values->size() == num_nodes) {
|
|
return;
|
|
}
|
|
mean_values->resize(num_nodes);
|
|
FillNodeMeanValues(tree, 0, mean_values);
|
|
}
|
|
|
|
class CPUPredictor : public Predictor {
|
|
protected:
|
|
// init thread buffers
|
|
static void InitThreadTemp(int nthread, int num_feature, std::vector<RegTree::FVec>* out) {
|
|
int prev_thread_temp_size = out->size();
|
|
if (prev_thread_temp_size < nthread) {
|
|
out->resize(nthread, RegTree::FVec());
|
|
}
|
|
}
|
|
|
|
void PredictDMatrix(DMatrix *p_fmat, std::vector<bst_float> *out_preds,
|
|
gbm::GBTreeModel const &model, int32_t tree_begin,
|
|
int32_t tree_end) const {
|
|
auto const n_threads = this->ctx_->Threads();
|
|
constexpr double kDensityThresh = .5;
|
|
size_t total = std::max(p_fmat->Info().num_row_ * p_fmat->Info().num_col_,
|
|
static_cast<uint64_t>(1));
|
|
double density = static_cast<double>(p_fmat->Info().num_nonzero_) /
|
|
static_cast<double>(total);
|
|
bool blocked = density > kDensityThresh;
|
|
|
|
std::vector<RegTree::FVec> feat_vecs;
|
|
InitThreadTemp(n_threads * (blocked ? kBlockOfRowsSize : 1),
|
|
model.learner_model_param->num_feature, &feat_vecs);
|
|
for (auto const &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
CHECK_EQ(out_preds->size(),
|
|
p_fmat->Info().num_row_ *
|
|
model.learner_model_param->num_output_group);
|
|
size_t constexpr kUnroll = 8;
|
|
if (blocked) {
|
|
PredictBatchByBlockOfRowsKernel<SparsePageView<kUnroll>, kBlockOfRowsSize>(
|
|
SparsePageView<kUnroll>{&batch}, out_preds, model, tree_begin, tree_end, &feat_vecs,
|
|
n_threads);
|
|
|
|
} else {
|
|
PredictBatchByBlockOfRowsKernel<SparsePageView<kUnroll>, 1>(
|
|
SparsePageView<kUnroll>{&batch}, out_preds, model, tree_begin, tree_end, &feat_vecs,
|
|
n_threads);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
explicit CPUPredictor(GenericParameter const* generic_param) :
|
|
Predictor::Predictor{generic_param} {}
|
|
|
|
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
|
|
const gbm::GBTreeModel &model, uint32_t tree_begin,
|
|
uint32_t tree_end = 0) const override {
|
|
auto* out_preds = &predts->predictions;
|
|
// This is actually already handled in gbm, but large amount of tests rely on the
|
|
// behaviour.
|
|
if (tree_end == 0) {
|
|
tree_end = model.trees.size();
|
|
}
|
|
this->PredictDMatrix(dmat, &out_preds->HostVector(), model, tree_begin,
|
|
tree_end);
|
|
}
|
|
|
|
template <typename Adapter, size_t kBlockSize>
|
|
void DispatchedInplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
|
|
const gbm::GBTreeModel &model, float missing,
|
|
PredictionCacheEntry *out_preds,
|
|
uint32_t tree_begin, uint32_t tree_end) const {
|
|
auto const n_threads = this->ctx_->Threads();
|
|
auto m = dmlc::get<std::shared_ptr<Adapter>>(x);
|
|
CHECK_EQ(m->NumColumns(), model.learner_model_param->num_feature)
|
|
<< "Number of columns in data must equal to trained model.";
|
|
if (p_m) {
|
|
p_m->Info().num_row_ = m->NumRows();
|
|
this->InitOutPredictions(p_m->Info(), &(out_preds->predictions), model);
|
|
} else {
|
|
MetaInfo info;
|
|
info.num_row_ = m->NumRows();
|
|
this->InitOutPredictions(info, &(out_preds->predictions), model);
|
|
}
|
|
std::vector<Entry> workspace(m->NumColumns() * 8 * n_threads);
|
|
auto &predictions = out_preds->predictions.HostVector();
|
|
std::vector<RegTree::FVec> thread_temp;
|
|
InitThreadTemp(n_threads * kBlockSize, model.learner_model_param->num_feature,
|
|
&thread_temp);
|
|
PredictBatchByBlockOfRowsKernel<AdapterView<Adapter>, kBlockSize>(
|
|
AdapterView<Adapter>(m.get(), missing, common::Span<Entry>{workspace}, n_threads),
|
|
&predictions, model, tree_begin, tree_end, &thread_temp, n_threads);
|
|
}
|
|
|
|
bool InplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
|
|
const gbm::GBTreeModel &model, float missing,
|
|
PredictionCacheEntry *out_preds, uint32_t tree_begin,
|
|
unsigned tree_end) const override {
|
|
if (x.type() == typeid(std::shared_ptr<data::DenseAdapter>)) {
|
|
this->DispatchedInplacePredict<data::DenseAdapter, kBlockOfRowsSize>(
|
|
x, p_m, model, missing, out_preds, tree_begin, tree_end);
|
|
} else if (x.type() == typeid(std::shared_ptr<data::CSRAdapter>)) {
|
|
this->DispatchedInplacePredict<data::CSRAdapter, 1>(
|
|
x, p_m, model, missing, out_preds, tree_begin, tree_end);
|
|
} else if (x.type() == typeid(std::shared_ptr<data::ArrayAdapter>)) {
|
|
this->DispatchedInplacePredict<data::ArrayAdapter, kBlockOfRowsSize> (
|
|
x, p_m, model, missing, out_preds, tree_begin, tree_end);
|
|
} else if (x.type() == typeid(std::shared_ptr<data::CSRArrayAdapter>)) {
|
|
this->DispatchedInplacePredict<data::CSRArrayAdapter, 1> (
|
|
x, p_m, model, missing, out_preds, tree_begin, tree_end);
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void PredictInstance(const SparsePage::Inst& inst,
|
|
std::vector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
|
|
std::vector<RegTree::FVec> feat_vecs;
|
|
feat_vecs.resize(1, RegTree::FVec());
|
|
feat_vecs[0].Init(model.learner_model_param->num_feature);
|
|
ntree_limit *= model.learner_model_param->num_output_group;
|
|
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
|
|
ntree_limit = static_cast<unsigned>(model.trees.size());
|
|
}
|
|
out_preds->resize(model.learner_model_param->num_output_group *
|
|
(model.param.size_leaf_vector + 1));
|
|
// loop over output groups
|
|
for (uint32_t gid = 0; gid < model.learner_model_param->num_output_group; ++gid) {
|
|
(*out_preds)[gid] = PredValue(inst, model.trees, model.tree_info, gid,
|
|
&feat_vecs[0], 0, ntree_limit) +
|
|
model.learner_model_param->base_score;
|
|
}
|
|
}
|
|
|
|
void PredictLeaf(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
|
|
auto const n_threads = this->ctx_->Threads();
|
|
std::vector<RegTree::FVec> feat_vecs;
|
|
const int num_feature = model.learner_model_param->num_feature;
|
|
InitThreadTemp(n_threads, num_feature, &feat_vecs);
|
|
const MetaInfo& info = p_fmat->Info();
|
|
// number of valid trees
|
|
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
|
|
ntree_limit = static_cast<unsigned>(model.trees.size());
|
|
}
|
|
std::vector<bst_float>& preds = out_preds->HostVector();
|
|
preds.resize(info.num_row_ * ntree_limit);
|
|
// start collecting the prediction
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
// parallel over local batch
|
|
auto page = batch.GetView();
|
|
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
|
common::ParallelFor(nsize, n_threads, [&](bst_omp_uint i) {
|
|
const int tid = omp_get_thread_num();
|
|
auto ridx = static_cast<size_t>(batch.base_rowid + i);
|
|
RegTree::FVec &feats = feat_vecs[tid];
|
|
if (feats.Size() == 0) {
|
|
feats.Init(num_feature);
|
|
}
|
|
feats.Fill(page[i]);
|
|
for (unsigned j = 0; j < ntree_limit; ++j) {
|
|
auto const& tree = *model.trees[j];
|
|
auto const& cats = tree.GetCategoriesMatrix();
|
|
bst_node_t tid = GetLeafIndex<true, true>(tree, feats, cats);
|
|
preds[ridx * ntree_limit + j] = static_cast<bst_float>(tid);
|
|
}
|
|
feats.Drop(page[i]);
|
|
});
|
|
}
|
|
}
|
|
|
|
void PredictContribution(DMatrix *p_fmat,
|
|
HostDeviceVector<float> *out_contribs,
|
|
const gbm::GBTreeModel &model, uint32_t ntree_limit,
|
|
std::vector<bst_float> const *tree_weights,
|
|
bool approximate, int condition,
|
|
unsigned condition_feature) const override {
|
|
auto const n_threads = this->ctx_->Threads();
|
|
const int num_feature = model.learner_model_param->num_feature;
|
|
std::vector<RegTree::FVec> feat_vecs;
|
|
InitThreadTemp(n_threads, num_feature, &feat_vecs);
|
|
const MetaInfo& info = p_fmat->Info();
|
|
// number of valid trees
|
|
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
|
|
ntree_limit = static_cast<unsigned>(model.trees.size());
|
|
}
|
|
const int ngroup = model.learner_model_param->num_output_group;
|
|
CHECK_NE(ngroup, 0);
|
|
size_t const ncolumns = num_feature + 1;
|
|
CHECK_NE(ncolumns, 0);
|
|
// allocate space for (number of features + bias) times the number of rows
|
|
std::vector<bst_float>& contribs = out_contribs->HostVector();
|
|
contribs.resize(info.num_row_ * ncolumns * model.learner_model_param->num_output_group);
|
|
// make sure contributions is zeroed, we could be reusing a previously
|
|
// allocated one
|
|
std::fill(contribs.begin(), contribs.end(), 0);
|
|
// initialize tree node mean values
|
|
std::vector<std::vector<float>> mean_values(ntree_limit);
|
|
common::ParallelFor(ntree_limit, n_threads, [&](bst_omp_uint i) {
|
|
FillNodeMeanValues(model.trees[i].get(), &(mean_values[i]));
|
|
});
|
|
auto base_margin = info.base_margin_.View(GenericParameter::kCpuId);
|
|
// start collecting the contributions
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
auto page = batch.GetView();
|
|
// parallel over local batch
|
|
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
|
common::ParallelFor(nsize, n_threads, [&](bst_omp_uint i) {
|
|
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
|
|
RegTree::FVec &feats = feat_vecs[omp_get_thread_num()];
|
|
if (feats.Size() == 0) {
|
|
feats.Init(num_feature);
|
|
}
|
|
std::vector<bst_float> this_tree_contribs(ncolumns);
|
|
// loop over all classes
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
bst_float* p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
|
|
feats.Fill(page[i]);
|
|
// calculate contributions
|
|
for (unsigned j = 0; j < ntree_limit; ++j) {
|
|
auto *tree_mean_values = &mean_values.at(j);
|
|
std::fill(this_tree_contribs.begin(), this_tree_contribs.end(), 0);
|
|
if (model.tree_info[j] != gid) {
|
|
continue;
|
|
}
|
|
if (!approximate) {
|
|
model.trees[j]->CalculateContributions(
|
|
feats, tree_mean_values, &this_tree_contribs[0], condition,
|
|
condition_feature);
|
|
} else {
|
|
model.trees[j]->CalculateContributionsApprox(
|
|
feats, tree_mean_values, &this_tree_contribs[0]);
|
|
}
|
|
for (size_t ci = 0; ci < ncolumns; ++ci) {
|
|
p_contribs[ci] +=
|
|
this_tree_contribs[ci] *
|
|
(tree_weights == nullptr ? 1 : (*tree_weights)[j]);
|
|
}
|
|
}
|
|
feats.Drop(page[i]);
|
|
// add base margin to BIAS
|
|
if (base_margin.Size() != 0) {
|
|
CHECK_EQ(base_margin.Shape(1), ngroup);
|
|
p_contribs[ncolumns - 1] += base_margin(row_idx, gid);
|
|
} else {
|
|
p_contribs[ncolumns - 1] += model.learner_model_param->base_score;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void PredictInteractionContributions(
|
|
DMatrix *p_fmat, HostDeviceVector<bst_float> *out_contribs,
|
|
const gbm::GBTreeModel &model, unsigned ntree_limit,
|
|
std::vector<bst_float> const *tree_weights,
|
|
bool approximate) const override {
|
|
const MetaInfo& info = p_fmat->Info();
|
|
const int ngroup = model.learner_model_param->num_output_group;
|
|
size_t const ncolumns = model.learner_model_param->num_feature;
|
|
const unsigned row_chunk = ngroup * (ncolumns + 1) * (ncolumns + 1);
|
|
const unsigned mrow_chunk = (ncolumns + 1) * (ncolumns + 1);
|
|
const unsigned crow_chunk = ngroup * (ncolumns + 1);
|
|
|
|
// allocate space for (number of features^2) times the number of rows and tmp off/on contribs
|
|
std::vector<bst_float>& contribs = out_contribs->HostVector();
|
|
contribs.resize(info.num_row_ * ngroup * (ncolumns + 1) * (ncolumns + 1));
|
|
HostDeviceVector<bst_float> contribs_off_hdv(info.num_row_ * ngroup * (ncolumns + 1));
|
|
auto &contribs_off = contribs_off_hdv.HostVector();
|
|
HostDeviceVector<bst_float> contribs_on_hdv(info.num_row_ * ngroup * (ncolumns + 1));
|
|
auto &contribs_on = contribs_on_hdv.HostVector();
|
|
HostDeviceVector<bst_float> contribs_diag_hdv(info.num_row_ * ngroup * (ncolumns + 1));
|
|
auto &contribs_diag = contribs_diag_hdv.HostVector();
|
|
|
|
// Compute the difference in effects when conditioning on each of the features on and off
|
|
// see: Axiomatic characterizations of probabilistic and
|
|
// cardinal-probabilistic interaction indices
|
|
PredictContribution(p_fmat, &contribs_diag_hdv, model, ntree_limit,
|
|
tree_weights, approximate, 0, 0);
|
|
for (size_t i = 0; i < ncolumns + 1; ++i) {
|
|
PredictContribution(p_fmat, &contribs_off_hdv, model, ntree_limit,
|
|
tree_weights, approximate, -1, i);
|
|
PredictContribution(p_fmat, &contribs_on_hdv, model, ntree_limit,
|
|
tree_weights, approximate, 1, i);
|
|
|
|
for (size_t j = 0; j < info.num_row_; ++j) {
|
|
for (int l = 0; l < ngroup; ++l) {
|
|
const unsigned o_offset = j * row_chunk + l * mrow_chunk + i * (ncolumns + 1);
|
|
const unsigned c_offset = j * crow_chunk + l * (ncolumns + 1);
|
|
contribs[o_offset + i] = 0;
|
|
for (size_t k = 0; k < ncolumns + 1; ++k) {
|
|
// fill in the diagonal with additive effects, and off-diagonal with the interactions
|
|
if (k == i) {
|
|
contribs[o_offset + i] += contribs_diag[c_offset + k];
|
|
} else {
|
|
contribs[o_offset + k] = (contribs_on[c_offset + k] - contribs_off[c_offset + k])/2.0;
|
|
contribs[o_offset + i] -= contribs[o_offset + k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
static size_t constexpr kBlockOfRowsSize = 64;
|
|
};
|
|
|
|
XGBOOST_REGISTER_PREDICTOR(CPUPredictor, "cpu_predictor")
|
|
.describe("Make predictions using CPU.")
|
|
.set_body([](GenericParameter const* generic_param) {
|
|
return new CPUPredictor(generic_param);
|
|
});
|
|
} // namespace predictor
|
|
} // namespace xgboost
|