xgboost/src/predictor/cpu_predictor.cc
Jiaming Yuan 68cdbc9c16
Remove omp_get_max_threads in CPU predictor. (#7519)
This is part of the on going effort to remove the dependency on global omp variables.
2022-01-04 22:12:15 +08:00

553 lines
22 KiB
C++

/*!
* Copyright by Contributors 2017-2021
*/
#include <dmlc/omp.h>
#include <dmlc/any.h>
#include <cstddef>
#include <limits>
#include <mutex>
#include "xgboost/base.h"
#include "xgboost/data.h"
#include "xgboost/predictor.h"
#include "xgboost/tree_model.h"
#include "xgboost/tree_updater.h"
#include "xgboost/logging.h"
#include "xgboost/host_device_vector.h"
#include "predict_fn.h"
#include "../data/adapter.h"
#include "../common/math.h"
#include "../common/threading_utils.h"
#include "../common/categorical.h"
#include "../gbm/gbtree_model.h"
namespace xgboost {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(cpu_predictor);
template <bool has_missing, bool has_categorical>
bst_node_t GetLeafIndex(RegTree const &tree, const RegTree::FVec &feat,
RegTree::CategoricalSplitMatrix const& cats) {
bst_node_t nid = 0;
while (!tree[nid].IsLeaf()) {
unsigned split_index = tree[nid].SplitIndex();
auto fvalue = feat.GetFvalue(split_index);
nid = GetNextNode<has_missing, has_categorical>(
tree[nid], nid, fvalue, has_missing && feat.IsMissing(split_index), cats);
}
return nid;
}
bst_float PredValue(const SparsePage::Inst &inst,
const std::vector<std::unique_ptr<RegTree>> &trees,
const std::vector<int> &tree_info, int bst_group,
RegTree::FVec *p_feats, unsigned tree_begin,
unsigned tree_end) {
bst_float psum = 0.0f;
p_feats->Fill(inst);
for (size_t i = tree_begin; i < tree_end; ++i) {
if (tree_info[i] == bst_group) {
auto const &tree = *trees[i];
bool has_categorical = tree.HasCategoricalSplit();
auto cats = tree.GetCategoriesMatrix();
bst_node_t nidx = -1;
if (has_categorical) {
nidx = GetLeafIndex<true, true>(tree, *p_feats, cats);
} else {
nidx = GetLeafIndex<true, false>(tree, *p_feats, cats);
}
psum += (*trees[i])[nidx].LeafValue();
}
}
p_feats->Drop(inst);
return psum;
}
template <bool has_categorical>
bst_float
PredValueByOneTree(const RegTree::FVec &p_feats, RegTree const &tree,
RegTree::CategoricalSplitMatrix const& cats) {
const bst_node_t leaf = p_feats.HasMissing() ?
GetLeafIndex<true, has_categorical>(tree, p_feats, cats) :
GetLeafIndex<false, has_categorical>(tree, p_feats, cats);
return tree[leaf].LeafValue();
}
void PredictByAllTrees(gbm::GBTreeModel const &model, const size_t tree_begin,
const size_t tree_end, std::vector<bst_float> *out_preds,
const size_t predict_offset, const size_t num_group,
const std::vector<RegTree::FVec> &thread_temp,
const size_t offset, const size_t block_size) {
std::vector<bst_float> &preds = *out_preds;
for (size_t tree_id = tree_begin; tree_id < tree_end; ++tree_id) {
const size_t gid = model.tree_info[tree_id];
auto const &tree = *model.trees[tree_id];
auto const& cats = tree.GetCategoriesMatrix();
auto has_categorical = tree.HasCategoricalSplit();
if (has_categorical) {
for (size_t i = 0; i < block_size; ++i) {
preds[(predict_offset + i) * num_group + gid] +=
PredValueByOneTree<true>(thread_temp[offset + i], tree, cats);
}
} else {
for (size_t i = 0; i < block_size; ++i) {
preds[(predict_offset + i) * num_group + gid] +=
PredValueByOneTree<false>(thread_temp[offset + i], tree, cats);
}
}
}
}
template <typename DataView>
void FVecFill(const size_t block_size, const size_t batch_offset, const int num_feature,
DataView* batch, const size_t fvec_offset, std::vector<RegTree::FVec>* p_feats) {
for (size_t i = 0; i < block_size; ++i) {
RegTree::FVec &feats = (*p_feats)[fvec_offset + i];
if (feats.Size() == 0) {
feats.Init(num_feature);
}
const SparsePage::Inst inst = (*batch)[batch_offset + i];
feats.Fill(inst);
}
}
template <typename DataView>
void FVecDrop(const size_t block_size, const size_t batch_offset, DataView* batch,
const size_t fvec_offset, std::vector<RegTree::FVec>* p_feats) {
for (size_t i = 0; i < block_size; ++i) {
RegTree::FVec &feats = (*p_feats)[fvec_offset + i];
const SparsePage::Inst inst = (*batch)[batch_offset + i];
feats.Drop(inst);
}
}
template <size_t kUnrollLen = 8>
struct SparsePageView {
bst_row_t base_rowid;
HostSparsePageView view;
static size_t constexpr kUnroll = kUnrollLen;
explicit SparsePageView(SparsePage const *p)
: base_rowid{p->base_rowid} {
view = p->GetView();
}
SparsePage::Inst operator[](size_t i) { return view[i]; }
size_t Size() const { return view.Size(); }
};
template <typename Adapter, size_t kUnrollLen = 8>
class AdapterView {
Adapter* adapter_;
float missing_;
common::Span<Entry> workspace_;
std::vector<size_t> current_unroll_;
public:
static size_t constexpr kUnroll = kUnrollLen;
public:
explicit AdapterView(Adapter *adapter, float missing, common::Span<Entry> workplace,
int32_t n_threads)
: adapter_{adapter},
missing_{missing},
workspace_{workplace},
current_unroll_(n_threads > 0 ? n_threads : 1, 0) {}
SparsePage::Inst operator[](size_t i) {
bst_feature_t columns = adapter_->NumColumns();
auto const &batch = adapter_->Value();
auto row = batch.GetLine(i);
auto t = omp_get_thread_num();
auto const beg = (columns * kUnroll * t) + (current_unroll_[t] * columns);
size_t non_missing {beg};
for (size_t c = 0; c < row.Size(); ++c) {
auto e = row.GetElement(c);
if (missing_ != e.value && !common::CheckNAN(e.value)) {
workspace_[non_missing] =
Entry{static_cast<bst_feature_t>(e.column_idx), e.value};
++non_missing;
}
}
auto ret = workspace_.subspan(beg, non_missing - beg);
current_unroll_[t]++;
if (current_unroll_[t] == kUnroll) {
current_unroll_[t] = 0;
}
return ret;
}
size_t Size() const { return adapter_->NumRows(); }
bst_row_t const static base_rowid = 0; // NOLINT
};
template <typename DataView, size_t block_of_rows_size>
void PredictBatchByBlockOfRowsKernel(
DataView batch, std::vector<bst_float> *out_preds,
gbm::GBTreeModel const &model, int32_t tree_begin, int32_t tree_end,
std::vector<RegTree::FVec> *p_thread_temp, int32_t n_threads) {
auto &thread_temp = *p_thread_temp;
int32_t const num_group = model.learner_model_param->num_output_group;
CHECK_EQ(model.param.size_leaf_vector, 0)
<< "size_leaf_vector is enforced to 0 so far";
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
const int num_feature = model.learner_model_param->num_feature;
omp_ulong n_blocks = common::DivRoundUp(nsize, block_of_rows_size);
common::ParallelFor(n_blocks, n_threads, [&](bst_omp_uint block_id) {
const size_t batch_offset = block_id * block_of_rows_size;
const size_t block_size =
std::min(nsize - batch_offset, block_of_rows_size);
const size_t fvec_offset = omp_get_thread_num() * block_of_rows_size;
FVecFill(block_size, batch_offset, num_feature, &batch, fvec_offset,
p_thread_temp);
// process block of rows through all trees to keep cache locality
PredictByAllTrees(model, tree_begin, tree_end, out_preds,
batch_offset + batch.base_rowid, num_group, thread_temp,
fvec_offset, block_size);
FVecDrop(block_size, batch_offset, &batch, fvec_offset, p_thread_temp);
});
}
float FillNodeMeanValues(RegTree const *tree, bst_node_t nidx, std::vector<float> *mean_values) {
bst_float result;
auto &node = (*tree)[nidx];
auto &node_mean_values = *mean_values;
if (node.IsLeaf()) {
result = node.LeafValue();
} else {
result = FillNodeMeanValues(tree, node.LeftChild(), mean_values) *
tree->Stat(node.LeftChild()).sum_hess;
result += FillNodeMeanValues(tree, node.RightChild(), mean_values) *
tree->Stat(node.RightChild()).sum_hess;
result /= tree->Stat(nidx).sum_hess;
}
node_mean_values[nidx] = result;
return result;
}
void FillNodeMeanValues(RegTree const* tree, std::vector<float>* mean_values) {
size_t num_nodes = tree->param.num_nodes;
if (mean_values->size() == num_nodes) {
return;
}
mean_values->resize(num_nodes);
FillNodeMeanValues(tree, 0, mean_values);
}
class CPUPredictor : public Predictor {
protected:
// init thread buffers
static void InitThreadTemp(int nthread, int num_feature, std::vector<RegTree::FVec>* out) {
int prev_thread_temp_size = out->size();
if (prev_thread_temp_size < nthread) {
out->resize(nthread, RegTree::FVec());
}
}
void PredictDMatrix(DMatrix *p_fmat, std::vector<bst_float> *out_preds,
gbm::GBTreeModel const &model, int32_t tree_begin,
int32_t tree_end) const {
auto const n_threads = this->ctx_->Threads();
constexpr double kDensityThresh = .5;
size_t total = std::max(p_fmat->Info().num_row_ * p_fmat->Info().num_col_,
static_cast<uint64_t>(1));
double density = static_cast<double>(p_fmat->Info().num_nonzero_) /
static_cast<double>(total);
bool blocked = density > kDensityThresh;
std::vector<RegTree::FVec> feat_vecs;
InitThreadTemp(n_threads * (blocked ? kBlockOfRowsSize : 1),
model.learner_model_param->num_feature, &feat_vecs);
for (auto const &batch : p_fmat->GetBatches<SparsePage>()) {
CHECK_EQ(out_preds->size(),
p_fmat->Info().num_row_ *
model.learner_model_param->num_output_group);
size_t constexpr kUnroll = 8;
if (blocked) {
PredictBatchByBlockOfRowsKernel<SparsePageView<kUnroll>, kBlockOfRowsSize>(
SparsePageView<kUnroll>{&batch}, out_preds, model, tree_begin, tree_end, &feat_vecs,
n_threads);
} else {
PredictBatchByBlockOfRowsKernel<SparsePageView<kUnroll>, 1>(
SparsePageView<kUnroll>{&batch}, out_preds, model, tree_begin, tree_end, &feat_vecs,
n_threads);
}
}
}
public:
explicit CPUPredictor(GenericParameter const* generic_param) :
Predictor::Predictor{generic_param} {}
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
const gbm::GBTreeModel &model, uint32_t tree_begin,
uint32_t tree_end = 0) const override {
auto* out_preds = &predts->predictions;
// This is actually already handled in gbm, but large amount of tests rely on the
// behaviour.
if (tree_end == 0) {
tree_end = model.trees.size();
}
this->PredictDMatrix(dmat, &out_preds->HostVector(), model, tree_begin,
tree_end);
}
template <typename Adapter, size_t kBlockSize>
void DispatchedInplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
const gbm::GBTreeModel &model, float missing,
PredictionCacheEntry *out_preds,
uint32_t tree_begin, uint32_t tree_end) const {
auto const n_threads = this->ctx_->Threads();
auto m = dmlc::get<std::shared_ptr<Adapter>>(x);
CHECK_EQ(m->NumColumns(), model.learner_model_param->num_feature)
<< "Number of columns in data must equal to trained model.";
if (p_m) {
p_m->Info().num_row_ = m->NumRows();
this->InitOutPredictions(p_m->Info(), &(out_preds->predictions), model);
} else {
MetaInfo info;
info.num_row_ = m->NumRows();
this->InitOutPredictions(info, &(out_preds->predictions), model);
}
std::vector<Entry> workspace(m->NumColumns() * 8 * n_threads);
auto &predictions = out_preds->predictions.HostVector();
std::vector<RegTree::FVec> thread_temp;
InitThreadTemp(n_threads * kBlockSize, model.learner_model_param->num_feature,
&thread_temp);
PredictBatchByBlockOfRowsKernel<AdapterView<Adapter>, kBlockSize>(
AdapterView<Adapter>(m.get(), missing, common::Span<Entry>{workspace}, n_threads),
&predictions, model, tree_begin, tree_end, &thread_temp, n_threads);
}
bool InplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
const gbm::GBTreeModel &model, float missing,
PredictionCacheEntry *out_preds, uint32_t tree_begin,
unsigned tree_end) const override {
if (x.type() == typeid(std::shared_ptr<data::DenseAdapter>)) {
this->DispatchedInplacePredict<data::DenseAdapter, kBlockOfRowsSize>(
x, p_m, model, missing, out_preds, tree_begin, tree_end);
} else if (x.type() == typeid(std::shared_ptr<data::CSRAdapter>)) {
this->DispatchedInplacePredict<data::CSRAdapter, 1>(
x, p_m, model, missing, out_preds, tree_begin, tree_end);
} else if (x.type() == typeid(std::shared_ptr<data::ArrayAdapter>)) {
this->DispatchedInplacePredict<data::ArrayAdapter, kBlockOfRowsSize> (
x, p_m, model, missing, out_preds, tree_begin, tree_end);
} else if (x.type() == typeid(std::shared_ptr<data::CSRArrayAdapter>)) {
this->DispatchedInplacePredict<data::CSRArrayAdapter, 1> (
x, p_m, model, missing, out_preds, tree_begin, tree_end);
} else {
return false;
}
return true;
}
void PredictInstance(const SparsePage::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
std::vector<RegTree::FVec> feat_vecs;
feat_vecs.resize(1, RegTree::FVec());
feat_vecs[0].Init(model.learner_model_param->num_feature);
ntree_limit *= model.learner_model_param->num_output_group;
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
out_preds->resize(model.learner_model_param->num_output_group *
(model.param.size_leaf_vector + 1));
// loop over output groups
for (uint32_t gid = 0; gid < model.learner_model_param->num_output_group; ++gid) {
(*out_preds)[gid] = PredValue(inst, model.trees, model.tree_info, gid,
&feat_vecs[0], 0, ntree_limit) +
model.learner_model_param->base_score;
}
}
void PredictLeaf(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
auto const n_threads = this->ctx_->Threads();
std::vector<RegTree::FVec> feat_vecs;
const int num_feature = model.learner_model_param->num_feature;
InitThreadTemp(n_threads, num_feature, &feat_vecs);
const MetaInfo& info = p_fmat->Info();
// number of valid trees
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
std::vector<bst_float>& preds = out_preds->HostVector();
preds.resize(info.num_row_ * ntree_limit);
// start collecting the prediction
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
// parallel over local batch
auto page = batch.GetView();
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
common::ParallelFor(nsize, n_threads, [&](bst_omp_uint i) {
const int tid = omp_get_thread_num();
auto ridx = static_cast<size_t>(batch.base_rowid + i);
RegTree::FVec &feats = feat_vecs[tid];
if (feats.Size() == 0) {
feats.Init(num_feature);
}
feats.Fill(page[i]);
for (unsigned j = 0; j < ntree_limit; ++j) {
auto const& tree = *model.trees[j];
auto const& cats = tree.GetCategoriesMatrix();
bst_node_t tid = GetLeafIndex<true, true>(tree, feats, cats);
preds[ridx * ntree_limit + j] = static_cast<bst_float>(tid);
}
feats.Drop(page[i]);
});
}
}
void PredictContribution(DMatrix *p_fmat,
HostDeviceVector<float> *out_contribs,
const gbm::GBTreeModel &model, uint32_t ntree_limit,
std::vector<bst_float> const *tree_weights,
bool approximate, int condition,
unsigned condition_feature) const override {
auto const n_threads = this->ctx_->Threads();
const int num_feature = model.learner_model_param->num_feature;
std::vector<RegTree::FVec> feat_vecs;
InitThreadTemp(n_threads, num_feature, &feat_vecs);
const MetaInfo& info = p_fmat->Info();
// number of valid trees
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
const int ngroup = model.learner_model_param->num_output_group;
CHECK_NE(ngroup, 0);
size_t const ncolumns = num_feature + 1;
CHECK_NE(ncolumns, 0);
// allocate space for (number of features + bias) times the number of rows
std::vector<bst_float>& contribs = out_contribs->HostVector();
contribs.resize(info.num_row_ * ncolumns * model.learner_model_param->num_output_group);
// make sure contributions is zeroed, we could be reusing a previously
// allocated one
std::fill(contribs.begin(), contribs.end(), 0);
// initialize tree node mean values
std::vector<std::vector<float>> mean_values(ntree_limit);
common::ParallelFor(ntree_limit, n_threads, [&](bst_omp_uint i) {
FillNodeMeanValues(model.trees[i].get(), &(mean_values[i]));
});
auto base_margin = info.base_margin_.View(GenericParameter::kCpuId);
// start collecting the contributions
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
auto page = batch.GetView();
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
common::ParallelFor(nsize, n_threads, [&](bst_omp_uint i) {
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
RegTree::FVec &feats = feat_vecs[omp_get_thread_num()];
if (feats.Size() == 0) {
feats.Init(num_feature);
}
std::vector<bst_float> this_tree_contribs(ncolumns);
// loop over all classes
for (int gid = 0; gid < ngroup; ++gid) {
bst_float* p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
feats.Fill(page[i]);
// calculate contributions
for (unsigned j = 0; j < ntree_limit; ++j) {
auto *tree_mean_values = &mean_values.at(j);
std::fill(this_tree_contribs.begin(), this_tree_contribs.end(), 0);
if (model.tree_info[j] != gid) {
continue;
}
if (!approximate) {
model.trees[j]->CalculateContributions(
feats, tree_mean_values, &this_tree_contribs[0], condition,
condition_feature);
} else {
model.trees[j]->CalculateContributionsApprox(
feats, tree_mean_values, &this_tree_contribs[0]);
}
for (size_t ci = 0; ci < ncolumns; ++ci) {
p_contribs[ci] +=
this_tree_contribs[ci] *
(tree_weights == nullptr ? 1 : (*tree_weights)[j]);
}
}
feats.Drop(page[i]);
// add base margin to BIAS
if (base_margin.Size() != 0) {
CHECK_EQ(base_margin.Shape(1), ngroup);
p_contribs[ncolumns - 1] += base_margin(row_idx, gid);
} else {
p_contribs[ncolumns - 1] += model.learner_model_param->base_score;
}
}
});
}
}
void PredictInteractionContributions(
DMatrix *p_fmat, HostDeviceVector<bst_float> *out_contribs,
const gbm::GBTreeModel &model, unsigned ntree_limit,
std::vector<bst_float> const *tree_weights,
bool approximate) const override {
const MetaInfo& info = p_fmat->Info();
const int ngroup = model.learner_model_param->num_output_group;
size_t const ncolumns = model.learner_model_param->num_feature;
const unsigned row_chunk = ngroup * (ncolumns + 1) * (ncolumns + 1);
const unsigned mrow_chunk = (ncolumns + 1) * (ncolumns + 1);
const unsigned crow_chunk = ngroup * (ncolumns + 1);
// allocate space for (number of features^2) times the number of rows and tmp off/on contribs
std::vector<bst_float>& contribs = out_contribs->HostVector();
contribs.resize(info.num_row_ * ngroup * (ncolumns + 1) * (ncolumns + 1));
HostDeviceVector<bst_float> contribs_off_hdv(info.num_row_ * ngroup * (ncolumns + 1));
auto &contribs_off = contribs_off_hdv.HostVector();
HostDeviceVector<bst_float> contribs_on_hdv(info.num_row_ * ngroup * (ncolumns + 1));
auto &contribs_on = contribs_on_hdv.HostVector();
HostDeviceVector<bst_float> contribs_diag_hdv(info.num_row_ * ngroup * (ncolumns + 1));
auto &contribs_diag = contribs_diag_hdv.HostVector();
// Compute the difference in effects when conditioning on each of the features on and off
// see: Axiomatic characterizations of probabilistic and
// cardinal-probabilistic interaction indices
PredictContribution(p_fmat, &contribs_diag_hdv, model, ntree_limit,
tree_weights, approximate, 0, 0);
for (size_t i = 0; i < ncolumns + 1; ++i) {
PredictContribution(p_fmat, &contribs_off_hdv, model, ntree_limit,
tree_weights, approximate, -1, i);
PredictContribution(p_fmat, &contribs_on_hdv, model, ntree_limit,
tree_weights, approximate, 1, i);
for (size_t j = 0; j < info.num_row_; ++j) {
for (int l = 0; l < ngroup; ++l) {
const unsigned o_offset = j * row_chunk + l * mrow_chunk + i * (ncolumns + 1);
const unsigned c_offset = j * crow_chunk + l * (ncolumns + 1);
contribs[o_offset + i] = 0;
for (size_t k = 0; k < ncolumns + 1; ++k) {
// fill in the diagonal with additive effects, and off-diagonal with the interactions
if (k == i) {
contribs[o_offset + i] += contribs_diag[c_offset + k];
} else {
contribs[o_offset + k] = (contribs_on[c_offset + k] - contribs_off[c_offset + k])/2.0;
contribs[o_offset + i] -= contribs[o_offset + k];
}
}
}
}
}
}
private:
static size_t constexpr kBlockOfRowsSize = 64;
};
XGBOOST_REGISTER_PREDICTOR(CPUPredictor, "cpu_predictor")
.describe("Make predictions using CPU.")
.set_body([](GenericParameter const* generic_param) {
return new CPUPredictor(generic_param);
});
} // namespace predictor
} // namespace xgboost