177 lines
6.8 KiB
Python
177 lines
6.8 KiB
Python
# -*- coding: utf-8 -*-
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
import xgboost.testing as tm
|
|
import unittest
|
|
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
tm._skip_if_no_pandas()
|
|
|
|
|
|
dpath = 'demo/data/'
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
class TestPandas(unittest.TestCase):
|
|
|
|
def test_pandas(self):
|
|
|
|
df = pd.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c'])
|
|
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
|
assert dm.feature_names == ['a', 'b', 'c']
|
|
assert dm.feature_types == ['int', 'float', 'i']
|
|
assert dm.num_row() == 2
|
|
assert dm.num_col() == 3
|
|
|
|
# overwrite feature_names and feature_types
|
|
dm = xgb.DMatrix(df, label=pd.Series([1, 2]),
|
|
feature_names=['x', 'y', 'z'], feature_types=['q', 'q', 'q'])
|
|
assert dm.feature_names == ['x', 'y', 'z']
|
|
assert dm.feature_types == ['q', 'q', 'q']
|
|
assert dm.num_row() == 2
|
|
assert dm.num_col() == 3
|
|
|
|
# incorrect dtypes
|
|
df = pd.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c'])
|
|
self.assertRaises(ValueError, xgb.DMatrix, df)
|
|
|
|
# numeric columns
|
|
df = pd.DataFrame([[1, 2., True], [2, 3., False]])
|
|
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
|
assert dm.feature_names == ['0', '1', '2']
|
|
assert dm.feature_types == ['int', 'float', 'i']
|
|
assert dm.num_row() == 2
|
|
assert dm.num_col() == 3
|
|
|
|
df = pd.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6])
|
|
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
|
assert dm.feature_names == ['4', '5', '6']
|
|
assert dm.feature_types == ['int', 'float', 'int']
|
|
assert dm.num_row() == 2
|
|
assert dm.num_col() == 3
|
|
|
|
df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
|
|
dummies = pd.get_dummies(df)
|
|
# B A_X A_Y A_Z
|
|
# 0 1 1 0 0
|
|
# 1 2 0 1 0
|
|
# 2 3 0 0 1
|
|
result, _, _ = xgb.core._maybe_pandas_data(dummies, None, None)
|
|
exp = np.array([[1., 1., 0., 0.],
|
|
[2., 0., 1., 0.],
|
|
[3., 0., 0., 1.]])
|
|
np.testing.assert_array_equal(result, exp)
|
|
|
|
dm = xgb.DMatrix(dummies)
|
|
assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z']
|
|
assert dm.feature_types == ['int', 'float', 'float', 'float']
|
|
assert dm.num_row() == 3
|
|
assert dm.num_col() == 4
|
|
|
|
df = pd.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]})
|
|
dm = xgb.DMatrix(df)
|
|
assert dm.feature_names == ['A=1', 'A=2']
|
|
assert dm.feature_types == ['int', 'int']
|
|
assert dm.num_row() == 3
|
|
assert dm.num_col() == 2
|
|
|
|
def test_pandas_label(self):
|
|
# label must be a single column
|
|
df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
|
|
self.assertRaises(ValueError, xgb.core._maybe_pandas_label, df)
|
|
|
|
# label must be supported dtype
|
|
df = pd.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)})
|
|
self.assertRaises(ValueError, xgb.core._maybe_pandas_label, df)
|
|
|
|
df = pd.DataFrame({'A': np.array([1, 2, 3], dtype=int)})
|
|
result = xgb.core._maybe_pandas_label(df)
|
|
np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]], dtype=float))
|
|
|
|
dm = xgb.DMatrix(np.random.randn(3, 2), label=df)
|
|
assert dm.num_row() == 3
|
|
assert dm.num_col() == 2
|
|
|
|
def test_cv_as_pandas(self):
|
|
dm = xgb.DMatrix(dpath + 'agaricus.txt.train')
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
|
|
|
|
import pandas as pd
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10)
|
|
assert isinstance(cv, pd.DataFrame)
|
|
exp = pd.Index([u'test-error-mean', u'test-error-std',
|
|
u'train-error-mean', u'train-error-std'])
|
|
assert cv.columns.equals(exp)
|
|
|
|
# show progress log (result is the same as above)
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
verbose_eval=True)
|
|
assert isinstance(cv, pd.DataFrame)
|
|
exp = pd.Index([u'test-error-mean', u'test-error-std',
|
|
u'train-error-mean', u'train-error-std'])
|
|
assert cv.columns.equals(exp)
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
verbose_eval=True, show_stdv=False)
|
|
assert isinstance(cv, pd.DataFrame)
|
|
exp = pd.Index([u'test-error-mean', u'test-error-std',
|
|
u'train-error-mean', u'train-error-std'])
|
|
assert cv.columns.equals(exp)
|
|
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1,
|
|
'objective': 'binary:logistic', 'eval_metric': 'auc'}
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
|
|
assert 'eval_metric' in params
|
|
assert 'auc' in cv.columns[0]
|
|
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1,
|
|
'objective': 'binary:logistic', 'eval_metric': ['auc']}
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
|
|
assert 'eval_metric' in params
|
|
assert 'auc' in cv.columns[0]
|
|
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1,
|
|
'objective': 'binary:logistic', 'eval_metric': ['auc']}
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
as_pandas=True, early_stopping_rounds=1)
|
|
assert 'eval_metric' in params
|
|
assert 'auc' in cv.columns[0]
|
|
assert cv.shape[0] < 10
|
|
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1,
|
|
'objective': 'binary:logistic'}
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
as_pandas=True, metrics='auc')
|
|
assert 'auc' in cv.columns[0]
|
|
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1,
|
|
'objective': 'binary:logistic'}
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
as_pandas=True, metrics=['auc'])
|
|
assert 'auc' in cv.columns[0]
|
|
|
|
params = {'max_depth': 2, 'eta': 1, 'silent': 1,
|
|
'objective': 'binary:logistic', 'eval_metric': ['auc']}
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
as_pandas=True, metrics='error')
|
|
assert 'eval_metric' in params
|
|
assert 'auc' not in cv.columns[0]
|
|
assert 'error' in cv.columns[0]
|
|
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
as_pandas=True, metrics=['error'])
|
|
assert 'eval_metric' in params
|
|
assert 'auc' not in cv.columns[0]
|
|
assert 'error' in cv.columns[0]
|
|
|
|
params = list(params.items())
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
as_pandas=True, metrics=['error'])
|
|
assert isinstance(params, list)
|
|
assert 'auc' not in cv.columns[0]
|
|
assert 'error' in cv.columns[0]
|