xgboost/tests/python-gpu/conftest.py
Philip Hyunsu Cho 9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00

46 lines
1.5 KiB
Python

import sys
import pytest
import logging
sys.path.append("tests/python")
import testing as tm # noqa
def has_rmm():
try:
import rmm
return True
except ImportError:
return False
@pytest.fixture(scope='session', autouse=True)
def setup_rmm_pool(request, pytestconfig):
if pytestconfig.getoption('--use-rmm-pool'):
if not has_rmm():
raise ImportError('The --use-rmm-pool option requires the RMM package')
import rmm
from dask_cuda.utils import get_n_gpus
rmm.reinitialize(pool_allocator=True, initial_pool_size=1024*1024*1024,
devices=list(range(get_n_gpus())))
@pytest.fixture(scope='function')
def local_cuda_cluster(request, pytestconfig):
kwargs = {}
if hasattr(request, 'param'):
kwargs.update(request.param)
if pytestconfig.getoption('--use-rmm-pool'):
if not has_rmm():
raise ImportError('The --use-rmm-pool option requires the RMM package')
import rmm
from dask_cuda.utils import get_n_gpus
rmm.reinitialize()
kwargs['rmm_pool_size'] = '2GB'
if tm.no_dask_cuda()['condition']:
raise ImportError('The local_cuda_cluster fixture requires dask_cuda package')
from dask_cuda import LocalCUDACluster
cluster = LocalCUDACluster(**kwargs)
yield cluster
cluster.close()
def pytest_addoption(parser):
parser.addoption('--use-rmm-pool', action='store_true', default=False, help='Use RMM pool')