149 lines
5.4 KiB
Plaintext
149 lines
5.4 KiB
Plaintext
/*!
|
|
* Copyright 2019-2022 by Contributors
|
|
* \file aft_obj.cu
|
|
* \brief Definition of AFT loss for survival analysis.
|
|
* \author Avinash Barnwal, Hyunsu Cho and Toby Hocking
|
|
*/
|
|
|
|
#include <vector>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/parameter.h"
|
|
#include "xgboost/span.h"
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/objective.h"
|
|
|
|
#include "../common/transform.h"
|
|
#include "../common/survival_util.h"
|
|
|
|
using AFTParam = xgboost::common::AFTParam;
|
|
using ProbabilityDistributionType = xgboost::common::ProbabilityDistributionType;
|
|
template <typename Distribution>
|
|
using AFTLoss = xgboost::common::AFTLoss<Distribution>;
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
DMLC_REGISTRY_FILE_TAG(aft_obj_gpu);
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
|
|
class AFTObj : public ObjFunction {
|
|
public:
|
|
void Configure(Args const& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
}
|
|
|
|
ObjInfo Task() const override { return ObjInfo::kSurvival; }
|
|
|
|
template <typename Distribution>
|
|
void GetGradientImpl(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info,
|
|
HostDeviceVector<GradientPair> *out_gpair,
|
|
size_t ndata, int device, bool is_null_weight,
|
|
float aft_loss_distribution_scale) {
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t _idx,
|
|
common::Span<GradientPair> _out_gpair,
|
|
common::Span<const bst_float> _preds,
|
|
common::Span<const bst_float> _labels_lower_bound,
|
|
common::Span<const bst_float> _labels_upper_bound,
|
|
common::Span<const bst_float> _weights) {
|
|
const double pred = static_cast<double>(_preds[_idx]);
|
|
const double label_lower_bound = static_cast<double>(_labels_lower_bound[_idx]);
|
|
const double label_upper_bound = static_cast<double>(_labels_upper_bound[_idx]);
|
|
const float grad = static_cast<float>(
|
|
AFTLoss<Distribution>::Gradient(label_lower_bound, label_upper_bound,
|
|
pred, aft_loss_distribution_scale));
|
|
const float hess = static_cast<float>(
|
|
AFTLoss<Distribution>::Hessian(label_lower_bound, label_upper_bound,
|
|
pred, aft_loss_distribution_scale));
|
|
const bst_float w = is_null_weight ? 1.0f : _weights[_idx];
|
|
_out_gpair[_idx] = GradientPair(grad * w, hess * w);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(ndata)}, this->ctx_->Threads(), device).Eval(
|
|
out_gpair, &preds, &info.labels_lower_bound_, &info.labels_upper_bound_,
|
|
&info.weights_);
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds, const MetaInfo& info, int /*iter*/,
|
|
HostDeviceVector<GradientPair>* out_gpair) override {
|
|
const size_t ndata = preds.Size();
|
|
CHECK_EQ(info.labels_lower_bound_.Size(), ndata);
|
|
CHECK_EQ(info.labels_upper_bound_.Size(), ndata);
|
|
out_gpair->Resize(ndata);
|
|
const int device = ctx_->gpu_id;
|
|
const float aft_loss_distribution_scale = param_.aft_loss_distribution_scale;
|
|
const bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
|
|
switch (param_.aft_loss_distribution) {
|
|
case common::ProbabilityDistributionType::kNormal:
|
|
GetGradientImpl<common::NormalDistribution>(preds, info, out_gpair, ndata, device,
|
|
is_null_weight, aft_loss_distribution_scale);
|
|
break;
|
|
case common::ProbabilityDistributionType::kLogistic:
|
|
GetGradientImpl<common::LogisticDistribution>(preds, info, out_gpair, ndata, device,
|
|
is_null_weight, aft_loss_distribution_scale);
|
|
break;
|
|
case common::ProbabilityDistributionType::kExtreme:
|
|
GetGradientImpl<common::ExtremeDistribution>(preds, info, out_gpair, ndata, device,
|
|
is_null_weight, aft_loss_distribution_scale);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unrecognized distribution";
|
|
}
|
|
}
|
|
|
|
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
|
|
// Trees give us a prediction in log scale, so exponentiate
|
|
common::Transform<>::Init(
|
|
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
|
_preds[_idx] = exp(_preds[_idx]);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
|
|
io_preds->DeviceIdx())
|
|
.Eval(io_preds);
|
|
}
|
|
|
|
void EvalTransform(HostDeviceVector<bst_float>* /*io_preds*/) override {
|
|
// do nothing here, since the AFT metric expects untransformed prediction score
|
|
}
|
|
|
|
bst_float ProbToMargin(bst_float base_score) const override {
|
|
return std::log(base_score);
|
|
}
|
|
|
|
const char* DefaultEvalMetric() const override {
|
|
return "aft-nloglik";
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String("survival:aft");
|
|
out["aft_loss_param"] = ToJson(param_);
|
|
}
|
|
|
|
void LoadConfig(Json const& in) override {
|
|
FromJson(in["aft_loss_param"], ¶m_);
|
|
}
|
|
|
|
private:
|
|
AFTParam param_;
|
|
};
|
|
|
|
// register the objective functions
|
|
XGBOOST_REGISTER_OBJECTIVE(AFTObj, "survival:aft")
|
|
.describe("AFT loss function")
|
|
.set_body([]() { return new AFTObj(); });
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|