230 lines
7.1 KiB
C++
230 lines
7.1 KiB
C++
/*!
|
|
* Copyright 2019-2020 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/learner.h"
|
|
#include "../helpers.h"
|
|
#include "../../../src/gbm/gbtree.h"
|
|
#include "xgboost/predictor.h"
|
|
|
|
namespace xgboost {
|
|
TEST(GBTree, SelectTreeMethod) {
|
|
size_t constexpr kCols = 10;
|
|
|
|
GenericParameter generic_param;
|
|
generic_param.UpdateAllowUnknown(Args{});
|
|
LearnerModelParam mparam;
|
|
mparam.base_score = 0.5;
|
|
mparam.num_feature = kCols;
|
|
mparam.num_output_group = 1;
|
|
|
|
std::unique_ptr<GradientBooster> p_gbm {
|
|
GradientBooster::Create("gbtree", &generic_param, &mparam)};
|
|
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
|
|
|
|
// Test if `tree_method` can be set
|
|
Args args {{"tree_method", "approx"}};
|
|
gbtree.Configure({args.cbegin(), args.cend()});
|
|
|
|
gbtree.Configure(args);
|
|
auto const& tparam = gbtree.GetTrainParam();
|
|
gbtree.Configure({{"tree_method", "approx"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_histmaker,prune");
|
|
gbtree.Configure({{"tree_method", "exact"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_colmaker,prune");
|
|
gbtree.Configure({{"tree_method", "hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
|
|
gbtree.Configure({{"booster", "dart"}, {"tree_method", "hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
|
|
|
|
#ifdef XGBOOST_USE_CUDA
|
|
generic_param.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
|
gbtree.Configure({{"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
|
|
gbtree.Configure({{"booster", "dart"}, {"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
|
|
#endif // XGBOOST_USE_CUDA
|
|
}
|
|
|
|
TEST(GBTree, WrongUpdater) {
|
|
size_t constexpr kRows = 17;
|
|
size_t constexpr kCols = 15;
|
|
|
|
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
p_dmat->Info().labels_.Resize(kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
// Hist can not be used for updating tree.
|
|
learner->SetParams(Args{{"tree_method", "hist"}, {"process_type", "update"}});
|
|
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
|
|
}
|
|
|
|
#ifdef XGBOOST_USE_CUDA
|
|
TEST(GBTree, ChoosePredictor) {
|
|
// The test ensures data don't get pulled into device.
|
|
size_t constexpr kRows = 17;
|
|
size_t constexpr kCols = 15;
|
|
|
|
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
auto& data = (*(p_dmat->GetBatches<SparsePage>().begin())).data;
|
|
p_dmat->Info().labels_.Resize(kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat);
|
|
}
|
|
ASSERT_TRUE(data.HostCanWrite());
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string fname = tempdir.path + "/model_param.bst";
|
|
|
|
{
|
|
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
|
|
learner->Save(fo.get());
|
|
}
|
|
|
|
// a new learner
|
|
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
{
|
|
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
|
|
learner->Load(fi.get());
|
|
}
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat);
|
|
}
|
|
ASSERT_TRUE(data.HostCanWrite());
|
|
|
|
// pull data into device.
|
|
data = HostDeviceVector<Entry>(data.HostVector(), 0);
|
|
data.DeviceSpan();
|
|
ASSERT_FALSE(data.HostCanWrite());
|
|
|
|
// another new learner
|
|
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat);
|
|
}
|
|
// data is not pulled back into host
|
|
ASSERT_FALSE(data.HostCanWrite());
|
|
}
|
|
#endif // XGBOOST_USE_CUDA
|
|
|
|
// Some other parts of test are in `Tree.JsonIO'.
|
|
TEST(GBTree, JsonIO) {
|
|
size_t constexpr kRows = 16, kCols = 16;
|
|
|
|
LearnerModelParam mparam;
|
|
mparam.num_feature = kCols;
|
|
mparam.num_output_group = 1;
|
|
mparam.base_score = 0.5;
|
|
|
|
GenericParameter gparam;
|
|
gparam.Init(Args{});
|
|
|
|
std::unique_ptr<GradientBooster> gbm {
|
|
CreateTrainedGBM("gbtree", Args{}, kRows, kCols, &mparam, &gparam) };
|
|
|
|
Json model {Object()};
|
|
model["model"] = Object();
|
|
auto& j_model = model["model"];
|
|
|
|
model["config"] = Object();
|
|
auto& j_param = model["config"];
|
|
|
|
gbm->SaveModel(&j_model);
|
|
gbm->SaveConfig(&j_param);
|
|
|
|
std::string model_str;
|
|
Json::Dump(model, &model_str);
|
|
|
|
model = Json::Load({model_str.c_str(), model_str.size()});
|
|
ASSERT_EQ(get<String>(model["model"]["name"]), "gbtree");
|
|
|
|
auto const& gbtree_model = model["model"]["model"];
|
|
ASSERT_EQ(get<Array>(gbtree_model["trees"]).size(), 1);
|
|
ASSERT_EQ(get<Integer>(get<Object>(get<Array>(gbtree_model["trees"]).front()).at("id")), 0);
|
|
ASSERT_EQ(get<Array>(gbtree_model["tree_info"]).size(), 1);
|
|
|
|
auto j_train_param = model["config"]["gbtree_train_param"];
|
|
ASSERT_EQ(get<String>(j_train_param["num_parallel_tree"]), "1");
|
|
}
|
|
|
|
TEST(Dart, JsonIO) {
|
|
size_t constexpr kRows = 16, kCols = 16;
|
|
|
|
LearnerModelParam mparam;
|
|
mparam.num_feature = kCols;
|
|
mparam.base_score = 0.5;
|
|
mparam.num_output_group = 1;
|
|
|
|
GenericParameter gparam;
|
|
gparam.Init(Args{});
|
|
|
|
std::unique_ptr<GradientBooster> gbm {
|
|
CreateTrainedGBM("dart", Args{}, kRows, kCols, &mparam, &gparam) };
|
|
|
|
Json model {Object()};
|
|
model["model"] = Object();
|
|
auto& j_model = model["model"];
|
|
model["config"] = Object();
|
|
|
|
auto& j_param = model["config"];
|
|
|
|
gbm->SaveModel(&j_model);
|
|
gbm->SaveConfig(&j_param);
|
|
|
|
std::string model_str;
|
|
Json::Dump(model, &model_str);
|
|
|
|
model = Json::Load({model_str.c_str(), model_str.size()});
|
|
|
|
ASSERT_EQ(get<String>(model["model"]["name"]), "dart") << model;
|
|
ASSERT_EQ(get<String>(model["config"]["name"]), "dart");
|
|
ASSERT_TRUE(IsA<Object>(model["model"]["gbtree"]));
|
|
ASSERT_NE(get<Array>(model["model"]["weight_drop"]).size(), 0);
|
|
}
|
|
|
|
TEST(Dart, Prediction) {
|
|
size_t constexpr kRows = 16, kCols = 10;
|
|
|
|
auto p_mat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
std::vector<bst_float> labels (kRows);
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
labels[i] = i % 2;
|
|
}
|
|
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
|
|
learner->SetParam("booster", "dart");
|
|
learner->SetParam("rate_drop", "0.5");
|
|
learner->Configure();
|
|
|
|
for (size_t i = 0; i < 16; ++i) {
|
|
learner->UpdateOneIter(i, p_mat);
|
|
}
|
|
|
|
HostDeviceVector<float> predts_training;
|
|
learner->Predict(p_mat, false, &predts_training, 0, true);
|
|
HostDeviceVector<float> predts_inference;
|
|
learner->Predict(p_mat, false, &predts_inference, 0, false);
|
|
|
|
auto& h_predts_training = predts_training.ConstHostVector();
|
|
auto& h_predts_inference = predts_inference.ConstHostVector();
|
|
ASSERT_EQ(h_predts_training.size(), h_predts_inference.size());
|
|
for (size_t i = 0; i < predts_inference.Size(); ++i) {
|
|
// Inference doesn't drop tree.
|
|
ASSERT_GT(std::abs(h_predts_training[i] - h_predts_inference[i]), kRtEps);
|
|
}
|
|
}
|
|
} // namespace xgboost
|