xgboost/src/gbm/gblinear.cc

318 lines
11 KiB
C++

/*!
* Copyright 2014-2020 by Contributors
* \file gblinear.cc
* \brief Implementation of Linear booster, with L1/L2 regularization: Elastic Net
* the update rule is parallel coordinate descent (shotgun)
* \author Tianqi Chen
*/
#include <dmlc/omp.h>
#include <dmlc/parameter.h>
#include <vector>
#include <string>
#include <sstream>
#include <algorithm>
#include "xgboost/gbm.h"
#include "xgboost/json.h"
#include "xgboost/predictor.h"
#include "xgboost/linear_updater.h"
#include "xgboost/logging.h"
#include "xgboost/learner.h"
#include "gblinear_model.h"
#include "../common/timer.h"
#include "../common/common.h"
namespace xgboost {
namespace gbm {
DMLC_REGISTRY_FILE_TAG(gblinear);
// training parameters
struct GBLinearTrainParam : public XGBoostParameter<GBLinearTrainParam> {
std::string updater;
float tolerance;
size_t max_row_perbatch;
DMLC_DECLARE_PARAMETER(GBLinearTrainParam) {
DMLC_DECLARE_FIELD(updater)
.set_default("shotgun")
.describe("Update algorithm for linear model. One of shotgun/coord_descent");
DMLC_DECLARE_FIELD(tolerance)
.set_lower_bound(0.0f)
.set_default(0.0f)
.describe("Stop if largest weight update is smaller than this number.");
DMLC_DECLARE_FIELD(max_row_perbatch)
.set_default(std::numeric_limits<size_t>::max())
.describe("Maximum rows per batch.");
}
};
/*!
* \brief gradient boosted linear model
*/
class GBLinear : public GradientBooster {
public:
explicit GBLinear(LearnerModelParam const* learner_model_param)
: learner_model_param_{learner_model_param},
model_{learner_model_param},
previous_model_{learner_model_param},
sum_instance_weight_(0),
sum_weight_complete_(false),
is_converged_(false) {}
void Configure(const Args& cfg) override {
if (model_.weight.size() == 0) {
model_.Configure(cfg);
}
param_.UpdateAllowUnknown(cfg);
updater_.reset(LinearUpdater::Create(param_.updater, generic_param_));
updater_->Configure(cfg);
monitor_.Init("GBLinear");
if (param_.updater == "gpu_coord_descent") {
common::AssertGPUSupport();
}
}
void Load(dmlc::Stream* fi) override {
model_.Load(fi);
}
void Save(dmlc::Stream* fo) const override {
model_.Save(fo);
}
void SaveModel(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String{"gblinear"};
out["model"] = Object();
auto& model = out["model"];
model_.SaveModel(&model);
}
void LoadModel(Json const& in) override {
CHECK_EQ(get<String>(in["name"]), "gblinear");
auto const& model = in["model"];
model_.LoadModel(model);
}
void LoadConfig(Json const& in) override {
CHECK_EQ(get<String>(in["name"]), "gblinear");
FromJson(in["gblinear_train_param"], &param_);
updater_.reset(LinearUpdater::Create(param_.updater, generic_param_));
this->updater_->LoadConfig(in["updater"]);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String{"gblinear"};
out["gblinear_train_param"] = ToJson(param_);
out["updater"] = Object();
auto& j_updater = out["updater"];
CHECK(this->updater_);
this->updater_->SaveConfig(&j_updater);
}
void DoBoost(DMatrix *p_fmat,
HostDeviceVector<GradientPair> *in_gpair,
PredictionCacheEntry* predt) override {
monitor_.Start("DoBoost");
model_.LazyInitModel();
this->LazySumWeights(p_fmat);
if (!this->CheckConvergence()) {
updater_->Update(in_gpair, p_fmat, &model_, sum_instance_weight_);
}
monitor_.Stop("DoBoost");
}
void PredictBatch(DMatrix *p_fmat,
PredictionCacheEntry *predts,
bool training,
unsigned ntree_limit) override {
monitor_.Start("PredictBatch");
auto* out_preds = &predts->predictions;
CHECK_EQ(ntree_limit, 0U)
<< "GBLinear::Predict ntrees is only valid for gbtree predictor";
this->PredictBatchInternal(p_fmat, &out_preds->HostVector());
monitor_.Stop("PredictBatch");
}
// add base margin
void PredictInstance(const SparsePage::Inst &inst,
std::vector<bst_float> *out_preds,
unsigned ntree_limit) override {
const int ngroup = model_.learner_model_param->num_output_group;
for (int gid = 0; gid < ngroup; ++gid) {
this->Pred(inst, dmlc::BeginPtr(*out_preds), gid,
learner_model_param_->base_score);
}
}
void PredictLeaf(DMatrix *p_fmat,
std::vector<bst_float> *out_preds,
unsigned ntree_limit) override {
LOG(FATAL) << "gblinear does not support prediction of leaf index";
}
void PredictContribution(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
unsigned ntree_limit, bool approximate, int condition = 0,
unsigned condition_feature = 0) override {
model_.LazyInitModel();
CHECK_EQ(ntree_limit, 0U)
<< "GBLinear::PredictContribution: ntrees is only valid for gbtree predictor";
const auto& base_margin = p_fmat->Info().base_margin_.ConstHostVector();
const int ngroup = model_.learner_model_param->num_output_group;
const size_t ncolumns = model_.learner_model_param->num_feature + 1;
// allocate space for (#features + bias) times #groups times #rows
std::vector<bst_float>& contribs = *out_contribs;
contribs.resize(p_fmat->Info().num_row_ * ncolumns * ngroup);
// make sure contributions is zeroed, we could be reusing a previously allocated one
std::fill(contribs.begin(), contribs.end(), 0);
// start collecting the contributions
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
auto inst = batch[i];
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
// calculate linear terms' contributions
for (auto& ins : inst) {
if (ins.index >= model_.learner_model_param->num_feature) continue;
p_contribs[ins.index] = ins.fvalue * model_[ins.index][gid];
}
// add base margin to BIAS
p_contribs[ncolumns - 1] = model_.Bias()[gid] +
((base_margin.size() != 0) ? base_margin[row_idx * ngroup + gid] :
learner_model_param_->base_score);
}
}
}
}
void PredictInteractionContributions(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
unsigned ntree_limit, bool approximate) override {
std::vector<bst_float>& contribs = *out_contribs;
// linear models have no interaction effects
const size_t nelements = model_.learner_model_param->num_feature *
model_.learner_model_param->num_feature;
contribs.resize(p_fmat->Info().num_row_ * nelements *
model_.learner_model_param->num_output_group);
std::fill(contribs.begin(), contribs.end(), 0);
}
std::vector<std::string> DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) const override {
return model_.DumpModel(fmap, with_stats, format);
}
bool UseGPU() const override {
if (param_.updater == "gpu_coord_descent") {
return true;
} else {
return false;
}
}
protected:
void PredictBatchInternal(DMatrix *p_fmat,
std::vector<bst_float> *out_preds) {
monitor_.Start("PredictBatchInternal");
model_.LazyInitModel();
std::vector<bst_float> &preds = *out_preds;
const auto& base_margin = p_fmat->Info().base_margin_.ConstHostVector();
// start collecting the prediction
const int ngroup = model_.learner_model_param->num_output_group;
preds.resize(p_fmat->Info().num_row_ * ngroup);
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
// output convention: nrow * k, where nrow is number of rows
// k is number of group
// parallel over local batch
const auto nsize = static_cast<omp_ulong>(batch.Size());
if (base_margin.size() != 0) {
CHECK_EQ(base_margin.size(), nsize * ngroup);
}
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < nsize; ++i) {
const size_t ridx = batch.base_rowid + i;
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {
bst_float margin =
(base_margin.size() != 0) ?
base_margin[ridx * ngroup + gid] : learner_model_param_->base_score;
this->Pred(batch[i], &preds[ridx * ngroup], gid, margin);
}
}
}
monitor_.Stop("PredictBatchInternal");
}
bool CheckConvergence() {
if (param_.tolerance == 0.0f) return false;
if (is_converged_) return true;
if (previous_model_.weight.size() != model_.weight.size()) {
previous_model_ = model_;
return false;
}
float largest_dw = 0.0;
for (size_t i = 0; i < model_.weight.size(); i++) {
largest_dw = std::max(
largest_dw, std::abs(model_.weight[i] - previous_model_.weight[i]));
}
previous_model_ = model_;
is_converged_ = largest_dw <= param_.tolerance;
return is_converged_;
}
void LazySumWeights(DMatrix *p_fmat) {
if (!sum_weight_complete_) {
auto &info = p_fmat->Info();
for (size_t i = 0; i < info.num_row_; i++) {
sum_instance_weight_ += info.GetWeight(i);
}
sum_weight_complete_ = true;
}
}
void Pred(const SparsePage::Inst &inst, bst_float *preds, int gid,
bst_float base) {
bst_float psum = model_.Bias()[gid] + base;
for (const auto& ins : inst) {
if (ins.index >= model_.learner_model_param->num_feature) continue;
psum += ins.fvalue * model_[ins.index][gid];
}
preds[gid] = psum;
}
// biase margin score
LearnerModelParam const* learner_model_param_;
// model field
GBLinearModel model_;
GBLinearModel previous_model_;
GBLinearTrainParam param_;
std::unique_ptr<LinearUpdater> updater_;
double sum_instance_weight_;
bool sum_weight_complete_;
common::Monitor monitor_;
bool is_converged_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(GBLinearTrainParam);
XGBOOST_REGISTER_GBM(GBLinear, "gblinear")
.describe("Linear booster, implement generalized linear model.")
.set_body([](LearnerModelParam const* booster_config) {
return new GBLinear(booster_config);
});
} // namespace gbm
} // namespace xgboost