xgboost/tests/cpp/common/test_quantile.cc

374 lines
13 KiB
C++

/**
* Copyright 2020-2023 by XGBoost Contributors
*/
#include "test_quantile.h"
#include <gtest/gtest.h>
#include "../../../src/common/hist_util.h"
#include "../../../src/data/adapter.h"
#include "xgboost/context.h"
namespace xgboost {
namespace common {
TEST(Quantile, LoadBalance) {
size_t constexpr kRows = 1000, kCols = 100;
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
std::vector<bst_feature_t> cols_ptr;
for (auto const& page : m->GetBatches<SparsePage>()) {
data::SparsePageAdapterBatch adapter{page.GetView()};
cols_ptr = LoadBalance(adapter, page.data.Size(), kCols, 13, [](auto) { return true; });
}
size_t n_cols = 0;
for (size_t i = 1; i < cols_ptr.size(); ++i) {
n_cols += cols_ptr[i] - cols_ptr[i - 1];
}
CHECK_EQ(n_cols, kCols);
}
namespace {
template <bool use_column>
using ContainerType = std::conditional_t<use_column, SortedSketchContainer, HostSketchContainer>;
// Dispatch for push page.
void PushPage(SortedSketchContainer* container, SparsePage const& page, MetaInfo const& info,
Span<float const> hessian) {
container->PushColPage(page, info, hessian);
}
void PushPage(HostSketchContainer* container, SparsePage const& page, MetaInfo const& info,
Span<float const> hessian) {
container->PushRowPage(page, info, hessian);
}
template <bool use_column>
void DoTestDistributedQuantile(size_t rows, size_t cols) {
auto const world = collective::GetWorldSize();
std::vector<MetaInfo> infos(2);
auto& h_weights = infos.front().weights_.HostVector();
h_weights.resize(rows);
SimpleLCG lcg;
SimpleRealUniformDistribution<float> dist(3, 1000);
std::generate(h_weights.begin(), h_weights.end(), [&]() { return dist(&lcg); });
std::vector<bst_row_t> column_size(cols, rows);
size_t n_bins = 64;
// Generate cuts for distributed environment.
auto sparsity = 0.5f;
auto rank = collective::GetRank();
std::vector<FeatureType> ft(cols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
auto m = RandomDataGenerator{rows, cols, sparsity}
.Seed(rank)
.Lower(.0f)
.Upper(1.0f)
.Type(ft)
.MaxCategory(13)
.GenerateDMatrix();
std::vector<float> hessian(rows, 1.0);
auto hess = Span<float const>{hessian};
ContainerType<use_column> sketch_distributed(n_bins, m->Info().feature_types.ConstHostSpan(),
column_size, false, false, AllThreadsForTest());
if (use_column) {
for (auto const& page : m->GetBatches<SortedCSCPage>()) {
PushPage(&sketch_distributed, page, m->Info(), hess);
}
} else {
for (auto const& page : m->GetBatches<SparsePage>()) {
PushPage(&sketch_distributed, page, m->Info(), hess);
}
}
HistogramCuts distributed_cuts;
sketch_distributed.MakeCuts(&distributed_cuts);
// Generate cuts for single node environment
collective::Finalize();
CHECK_EQ(collective::GetWorldSize(), 1);
std::for_each(column_size.begin(), column_size.end(), [=](auto& size) { size *= world; });
m->Info().num_row_ = world * rows;
ContainerType<use_column> sketch_on_single_node(n_bins, m->Info().feature_types.ConstHostSpan(),
column_size, false, false, AllThreadsForTest());
m->Info().num_row_ = rows;
for (auto rank = 0; rank < world; ++rank) {
auto m = RandomDataGenerator{rows, cols, sparsity}
.Seed(rank)
.Type(ft)
.MaxCategory(13)
.Lower(.0f)
.Upper(1.0f)
.GenerateDMatrix();
if (use_column) {
for (auto const& page : m->GetBatches<SortedCSCPage>()) {
PushPage(&sketch_on_single_node, page, m->Info(), hess);
}
} else {
for (auto const& page : m->GetBatches<SparsePage>()) {
PushPage(&sketch_on_single_node, page, m->Info(), hess);
}
}
}
HistogramCuts single_node_cuts;
sketch_on_single_node.MakeCuts(&single_node_cuts);
auto const& sptrs = single_node_cuts.Ptrs();
auto const& dptrs = distributed_cuts.Ptrs();
auto const& svals = single_node_cuts.Values();
auto const& dvals = distributed_cuts.Values();
auto const& smins = single_node_cuts.MinValues();
auto const& dmins = distributed_cuts.MinValues();
ASSERT_EQ(sptrs.size(), dptrs.size());
for (size_t i = 0; i < sptrs.size(); ++i) {
ASSERT_EQ(sptrs[i], dptrs[i]) << i;
}
ASSERT_EQ(svals.size(), dvals.size());
for (size_t i = 0; i < svals.size(); ++i) {
ASSERT_NEAR(svals[i], dvals[i], 2e-2f);
}
ASSERT_EQ(smins.size(), dmins.size());
for (size_t i = 0; i < smins.size(); ++i) {
ASSERT_FLOAT_EQ(smins[i], dmins[i]);
}
}
template <bool use_column>
void TestDistributedQuantile(size_t const rows, size_t const cols) {
auto constexpr kWorkers = 4;
RunWithInMemoryCommunicator(kWorkers, DoTestDistributedQuantile<use_column>, rows, cols);
}
} // anonymous namespace
TEST(Quantile, DistributedBasic) {
constexpr size_t kRows = 10, kCols = 10;
TestDistributedQuantile<false>(kRows, kCols);
}
TEST(Quantile, Distributed) {
constexpr size_t kRows = 4000, kCols = 200;
TestDistributedQuantile<false>(kRows, kCols);
}
TEST(Quantile, SortedDistributedBasic) {
constexpr size_t kRows = 10, kCols = 10;
TestDistributedQuantile<true>(kRows, kCols);
}
TEST(Quantile, SortedDistributed) {
constexpr size_t kRows = 4000, kCols = 200;
TestDistributedQuantile<true>(kRows, kCols);
}
namespace {
template <bool use_column>
void DoTestColSplitQuantile(size_t rows, size_t cols) {
auto const world = collective::GetWorldSize();
auto const rank = collective::GetRank();
auto m = std::unique_ptr<DMatrix>{[=]() {
auto sparsity = 0.5f;
std::vector<FeatureType> ft(cols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
auto dmat = RandomDataGenerator{rows, cols, sparsity}
.Seed(0)
.Lower(.0f)
.Upper(1.0f)
.Type(ft)
.MaxCategory(13)
.GenerateDMatrix();
return dmat->SliceCol(world, rank);
}()};
std::vector<bst_row_t> column_size(cols, 0);
auto const slice_size = cols / world;
auto const slice_start = slice_size * rank;
auto const slice_end = (rank == world - 1) ? cols : slice_start + slice_size;
for (auto i = slice_start; i < slice_end; i++) {
column_size[i] = rows;
}
auto const n_bins = 64;
// Generate cuts for distributed environment.
HistogramCuts distributed_cuts;
{
ContainerType<use_column> sketch_distributed(n_bins, m->Info().feature_types.ConstHostSpan(),
column_size, false, true, AllThreadsForTest());
std::vector<float> hessian(rows, 1.0);
auto hess = Span<float const>{hessian};
if (use_column) {
for (auto const& page : m->GetBatches<SortedCSCPage>()) {
PushPage(&sketch_distributed, page, m->Info(), hess);
}
} else {
for (auto const& page : m->GetBatches<SparsePage>()) {
PushPage(&sketch_distributed, page, m->Info(), hess);
}
}
sketch_distributed.MakeCuts(&distributed_cuts);
}
// Generate cuts for single node environment
collective::Finalize();
CHECK_EQ(collective::GetWorldSize(), 1);
HistogramCuts single_node_cuts;
{
ContainerType<use_column> sketch_on_single_node(n_bins, m->Info().feature_types.ConstHostSpan(),
column_size, false, false, AllThreadsForTest());
std::vector<float> hessian(rows, 1.0);
auto hess = Span<float const>{hessian};
if (use_column) {
for (auto const& page : m->GetBatches<SortedCSCPage>()) {
PushPage(&sketch_on_single_node, page, m->Info(), hess);
}
} else {
for (auto const& page : m->GetBatches<SparsePage>()) {
PushPage(&sketch_on_single_node, page, m->Info(), hess);
}
}
sketch_on_single_node.MakeCuts(&single_node_cuts);
}
auto const& sptrs = single_node_cuts.Ptrs();
auto const& dptrs = distributed_cuts.Ptrs();
auto const& svals = single_node_cuts.Values();
auto const& dvals = distributed_cuts.Values();
auto const& smins = single_node_cuts.MinValues();
auto const& dmins = distributed_cuts.MinValues();
EXPECT_EQ(sptrs.size(), dptrs.size());
for (size_t i = 0; i < sptrs.size(); ++i) {
EXPECT_EQ(sptrs[i], dptrs[i]) << "rank: " << rank << ", i: " << i;
}
EXPECT_EQ(svals.size(), dvals.size());
for (size_t i = 0; i < svals.size(); ++i) {
EXPECT_NEAR(svals[i], dvals[i], 2e-2f) << "rank: " << rank << ", i: " << i;
}
EXPECT_EQ(smins.size(), dmins.size());
for (size_t i = 0; i < smins.size(); ++i) {
EXPECT_FLOAT_EQ(smins[i], dmins[i]) << "rank: " << rank << ", i: " << i;
}
}
template <bool use_column>
void TestColSplitQuantile(size_t rows, size_t cols) {
auto constexpr kWorkers = 4;
RunWithInMemoryCommunicator(kWorkers, DoTestColSplitQuantile<use_column>, rows, cols);
}
} // anonymous namespace
TEST(Quantile, ColSplitBasic) {
constexpr size_t kRows = 10, kCols = 10;
TestColSplitQuantile<false>(kRows, kCols);
}
TEST(Quantile, ColSplit) {
constexpr size_t kRows = 4000, kCols = 200;
TestColSplitQuantile<false>(kRows, kCols);
}
TEST(Quantile, ColSplitSortedBasic) {
constexpr size_t kRows = 10, kCols = 10;
TestColSplitQuantile<true>(kRows, kCols);
}
TEST(Quantile, ColSplitSorted) {
constexpr size_t kRows = 4000, kCols = 200;
TestColSplitQuantile<true>(kRows, kCols);
}
namespace {
void TestSameOnAllWorkers() {
auto const world = collective::GetWorldSize();
constexpr size_t kRows = 1000, kCols = 100;
RunWithSeedsAndBins(
kRows, [=](int32_t seed, size_t n_bins, MetaInfo const&) {
auto rank = collective::GetRank();
HostDeviceVector<float> storage;
std::vector<FeatureType> ft(kCols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
auto m = RandomDataGenerator{kRows, kCols, 0}
.Device(Context::kCpuId)
.Type(ft)
.MaxCategory(17)
.Seed(rank + seed)
.GenerateDMatrix();
auto cuts = SketchOnDMatrix(m.get(), n_bins, AllThreadsForTest());
std::vector<float> cut_values(cuts.Values().size() * world, 0);
std::vector<
typename std::remove_reference_t<decltype(cuts.Ptrs())>::value_type>
cut_ptrs(cuts.Ptrs().size() * world, 0);
std::vector<float> cut_min_values(cuts.MinValues().size() * world, 0);
size_t value_size = cuts.Values().size();
collective::Allreduce<collective::Operation::kMax>(&value_size, 1);
size_t ptr_size = cuts.Ptrs().size();
collective::Allreduce<collective::Operation::kMax>(&ptr_size, 1);
CHECK_EQ(ptr_size, kCols + 1);
size_t min_value_size = cuts.MinValues().size();
collective::Allreduce<collective::Operation::kMax>(&min_value_size, 1);
CHECK_EQ(min_value_size, kCols);
size_t value_offset = value_size * rank;
std::copy(cuts.Values().begin(), cuts.Values().end(),
cut_values.begin() + value_offset);
size_t ptr_offset = ptr_size * rank;
std::copy(cuts.Ptrs().cbegin(), cuts.Ptrs().cend(),
cut_ptrs.begin() + ptr_offset);
size_t min_values_offset = min_value_size * rank;
std::copy(cuts.MinValues().cbegin(), cuts.MinValues().cend(),
cut_min_values.begin() + min_values_offset);
collective::Allreduce<collective::Operation::kSum>(cut_values.data(), cut_values.size());
collective::Allreduce<collective::Operation::kSum>(cut_ptrs.data(), cut_ptrs.size());
collective::Allreduce<collective::Operation::kSum>(cut_min_values.data(), cut_min_values.size());
for (int32_t i = 0; i < world; i++) {
for (size_t j = 0; j < value_size; ++j) {
size_t idx = i * value_size + j;
EXPECT_NEAR(cuts.Values().at(j), cut_values.at(idx), kRtEps);
}
for (size_t j = 0; j < ptr_size; ++j) {
size_t idx = i * ptr_size + j;
EXPECT_EQ(cuts.Ptrs().at(j), cut_ptrs.at(idx));
}
for (size_t j = 0; j < min_value_size; ++j) {
size_t idx = i * min_value_size + j;
EXPECT_EQ(cuts.MinValues().at(j), cut_min_values.at(idx));
}
}
});
}
} // anonymous namespace
TEST(Quantile, SameOnAllWorkers) {
auto constexpr kWorkers = 4;
RunWithInMemoryCommunicator(kWorkers, TestSameOnAllWorkers);
}
} // namespace common
} // namespace xgboost