188 lines
6.3 KiB
C++
188 lines
6.3 KiB
C++
#include <gtest/gtest.h>
|
|
#include "test_quantile.h"
|
|
#include "../../../src/common/quantile.h"
|
|
#include "../../../src/common/hist_util.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
TEST(Quantile, LoadBalance) {
|
|
size_t constexpr kRows = 1000, kCols = 100;
|
|
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
|
std::vector<bst_feature_t> cols_ptr;
|
|
for (auto const &page : m->GetBatches<SparsePage>()) {
|
|
cols_ptr = HostSketchContainer::LoadBalance(page, kCols, 13);
|
|
}
|
|
size_t n_cols = 0;
|
|
for (size_t i = 1; i < cols_ptr.size(); ++i) {
|
|
n_cols += cols_ptr[i] - cols_ptr[i - 1];
|
|
}
|
|
CHECK_EQ(n_cols, kCols);
|
|
}
|
|
|
|
void TestDistributedQuantile(size_t rows, size_t cols) {
|
|
std::string msg {"Skipping AllReduce test"};
|
|
int32_t constexpr kWorkers = 4;
|
|
InitRabitContext(msg, kWorkers);
|
|
auto world = rabit::GetWorldSize();
|
|
if (world != 1) {
|
|
ASSERT_EQ(world, kWorkers);
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
std::vector<MetaInfo> infos(2);
|
|
auto& h_weights = infos.front().weights_.HostVector();
|
|
h_weights.resize(rows);
|
|
SimpleLCG lcg;
|
|
SimpleRealUniformDistribution<float> dist(3, 1000);
|
|
std::generate(h_weights.begin(), h_weights.end(), [&]() { return dist(&lcg); });
|
|
std::vector<bst_row_t> column_size(cols, rows);
|
|
size_t n_bins = 64;
|
|
|
|
// Generate cuts for distributed environment.
|
|
auto sparsity = 0.5f;
|
|
auto rank = rabit::GetRank();
|
|
HostSketchContainer sketch_distributed(column_size, n_bins, false);
|
|
auto m = RandomDataGenerator{rows, cols, sparsity}
|
|
.Seed(rank)
|
|
.Lower(.0f)
|
|
.Upper(1.0f)
|
|
.GenerateDMatrix();
|
|
for (auto const &page : m->GetBatches<SparsePage>()) {
|
|
sketch_distributed.PushRowPage(page, m->Info());
|
|
}
|
|
HistogramCuts distributed_cuts;
|
|
sketch_distributed.MakeCuts(&distributed_cuts);
|
|
|
|
// Generate cuts for single node environment
|
|
rabit::Finalize();
|
|
CHECK_EQ(rabit::GetWorldSize(), 1);
|
|
std::for_each(column_size.begin(), column_size.end(), [=](auto& size) { size *= world; });
|
|
HostSketchContainer sketch_on_single_node(column_size, n_bins, false);
|
|
for (auto rank = 0; rank < world; ++rank) {
|
|
auto m = RandomDataGenerator{rows, cols, sparsity}
|
|
.Seed(rank)
|
|
.Lower(.0f)
|
|
.Upper(1.0f)
|
|
.GenerateDMatrix();
|
|
for (auto const &page : m->GetBatches<SparsePage>()) {
|
|
sketch_on_single_node.PushRowPage(page, m->Info());
|
|
}
|
|
}
|
|
|
|
HistogramCuts single_node_cuts;
|
|
sketch_on_single_node.MakeCuts(&single_node_cuts);
|
|
|
|
auto const& sptrs = single_node_cuts.Ptrs();
|
|
auto const& dptrs = distributed_cuts.Ptrs();
|
|
auto const& svals = single_node_cuts.Values();
|
|
auto const& dvals = distributed_cuts.Values();
|
|
auto const& smins = single_node_cuts.MinValues();
|
|
auto const& dmins = distributed_cuts.MinValues();
|
|
|
|
ASSERT_EQ(sptrs.size(), dptrs.size());
|
|
for (size_t i = 0; i < sptrs.size(); ++i) {
|
|
ASSERT_EQ(sptrs[i], dptrs[i]);
|
|
}
|
|
|
|
ASSERT_EQ(svals.size(), dvals.size());
|
|
for (size_t i = 0; i < svals.size(); ++i) {
|
|
ASSERT_NEAR(svals[i], dvals[i], 2e-2f);
|
|
}
|
|
|
|
ASSERT_EQ(smins.size(), dmins.size());
|
|
for (size_t i = 0; i < smins.size(); ++i) {
|
|
ASSERT_FLOAT_EQ(smins[i], dmins[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Quantile, DistributedBasic) {
|
|
#if defined(__unix__)
|
|
constexpr size_t kRows = 10, kCols = 10;
|
|
TestDistributedQuantile(kRows, kCols);
|
|
#endif
|
|
}
|
|
|
|
TEST(Quantile, Distributed) {
|
|
#if defined(__unix__)
|
|
constexpr size_t kRows = 1000, kCols = 200;
|
|
TestDistributedQuantile(kRows, kCols);
|
|
#endif
|
|
}
|
|
|
|
TEST(Quantile, SameOnAllWorkers) {
|
|
#if defined(__unix__)
|
|
std::string msg{"Skipping Quantile AllreduceBasic test"};
|
|
int32_t constexpr kWorkers = 4;
|
|
InitRabitContext(msg, kWorkers);
|
|
auto world = rabit::GetWorldSize();
|
|
if (world != 1) {
|
|
CHECK_EQ(world, kWorkers);
|
|
} else {
|
|
LOG(WARNING) << msg;
|
|
return;
|
|
}
|
|
|
|
constexpr size_t kRows = 1000, kCols = 100;
|
|
RunWithSeedsAndBins(
|
|
kRows, [=](int32_t seed, size_t n_bins, MetaInfo const &info) {
|
|
auto rank = rabit::GetRank();
|
|
HostDeviceVector<float> storage;
|
|
auto m = RandomDataGenerator{kRows, kCols, 0}
|
|
.Device(0)
|
|
.Seed(rank + seed)
|
|
.GenerateDMatrix();
|
|
auto cuts = SketchOnDMatrix(m.get(), n_bins);
|
|
std::vector<float> cut_values(cuts.Values().size() * world, 0);
|
|
std::vector<
|
|
typename std::remove_reference_t<decltype(cuts.Ptrs())>::value_type>
|
|
cut_ptrs(cuts.Ptrs().size() * world, 0);
|
|
std::vector<float> cut_min_values(cuts.MinValues().size() * world, 0);
|
|
|
|
size_t value_size = cuts.Values().size();
|
|
rabit::Allreduce<rabit::op::Max>(&value_size, 1);
|
|
size_t ptr_size = cuts.Ptrs().size();
|
|
rabit::Allreduce<rabit::op::Max>(&ptr_size, 1);
|
|
CHECK_EQ(ptr_size, kCols + 1);
|
|
size_t min_value_size = cuts.MinValues().size();
|
|
rabit::Allreduce<rabit::op::Max>(&min_value_size, 1);
|
|
CHECK_EQ(min_value_size, kCols);
|
|
|
|
size_t value_offset = value_size * rank;
|
|
std::copy(cuts.Values().begin(), cuts.Values().end(),
|
|
cut_values.begin() + value_offset);
|
|
size_t ptr_offset = ptr_size * rank;
|
|
std::copy(cuts.Ptrs().cbegin(), cuts.Ptrs().cend(),
|
|
cut_ptrs.begin() + ptr_offset);
|
|
size_t min_values_offset = min_value_size * rank;
|
|
std::copy(cuts.MinValues().cbegin(), cuts.MinValues().cend(),
|
|
cut_min_values.begin() + min_values_offset);
|
|
|
|
rabit::Allreduce<rabit::op::Sum>(cut_values.data(), cut_values.size());
|
|
rabit::Allreduce<rabit::op::Sum>(cut_ptrs.data(), cut_ptrs.size());
|
|
rabit::Allreduce<rabit::op::Sum>(cut_min_values.data(), cut_min_values.size());
|
|
|
|
for (int32_t i = 0; i < world; i++) {
|
|
for (size_t j = 0; j < value_size; ++j) {
|
|
size_t idx = i * value_size + j;
|
|
ASSERT_NEAR(cuts.Values().at(j), cut_values.at(idx), kRtEps);
|
|
}
|
|
|
|
for (size_t j = 0; j < ptr_size; ++j) {
|
|
size_t idx = i * ptr_size + j;
|
|
ASSERT_EQ(cuts.Ptrs().at(j), cut_ptrs.at(idx));
|
|
}
|
|
|
|
for (size_t j = 0; j < min_value_size; ++j) {
|
|
size_t idx = i * min_value_size + j;
|
|
ASSERT_EQ(cuts.MinValues().at(j), cut_min_values.at(idx));
|
|
}
|
|
}
|
|
});
|
|
rabit::Finalize();
|
|
#endif // defined(__unix__)
|
|
}
|
|
} // namespace common
|
|
} // namespace xgboost
|