838 lines
28 KiB
Python
838 lines
28 KiB
Python
# coding: utf-8
|
|
# pylint: disable=too-many-arguments
|
|
"""Core XGBoost Library."""
|
|
from __future__ import absolute_import
|
|
|
|
import os
|
|
import re
|
|
import sys
|
|
import ctypes
|
|
import platform
|
|
import collections
|
|
|
|
import numpy as np
|
|
import scipy.sparse
|
|
|
|
|
|
class XGBoostLibraryNotFound(Exception):
|
|
"""Error throwed by when xgboost is not found"""
|
|
pass
|
|
|
|
class XGBoostError(Exception):
|
|
"""Error throwed by xgboost trainer."""
|
|
pass
|
|
|
|
|
|
if sys.version_info[0] == 3:
|
|
# pylint: disable=invalid-name
|
|
STRING_TYPES = str,
|
|
else:
|
|
# pylint: disable=invalid-name
|
|
STRING_TYPES = basestring,
|
|
|
|
|
|
def find_lib_path():
|
|
"""Load find the path to xgboost dynamic library files.
|
|
|
|
Returns
|
|
-------
|
|
lib_path: list(string)
|
|
List of all found library path to xgboost
|
|
"""
|
|
curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
|
|
#make pythonpack hack: copy this directory one level upper for setup.py
|
|
dll_path = [curr_path, os.path.join(curr_path, '../../wrapper/')
|
|
, os.path.join(curr_path, './wrapper/')]
|
|
if os.name == 'nt':
|
|
if platform.architecture()[0] == '64bit':
|
|
dll_path.append(os.path.join(curr_path, '../../windows/x64/Release/'))
|
|
#hack for pip installation when copy all parent source directory here
|
|
dll_path.append(os.path.join(curr_path, './windows/x64/Release/'))
|
|
else:
|
|
dll_path.append(os.path.join(curr_path, '../../windows/Release/'))
|
|
#hack for pip installation when copy all parent source directory here
|
|
dll_path.append(os.path.join(curr_path, './windows/Release/'))
|
|
if os.name == 'nt':
|
|
dll_path = [os.path.join(p, 'xgboost_wrapper.dll') for p in dll_path]
|
|
else:
|
|
dll_path = [os.path.join(p, 'libxgboostwrapper.so') for p in dll_path]
|
|
lib_path = [p for p in dll_path if os.path.exists(p) and os.path.isfile(p)]
|
|
if len(lib_path) == 0 and not os.environ.get('XGBOOST_BUILD_DOC', False):
|
|
raise XGBoostLibraryNotFound(
|
|
'Cannot find XGBoost Libarary in the candicate path, ' +
|
|
'did you run build.sh in root path?\n'
|
|
'List of candidates:\n' + ('\n'.join(dll_path)))
|
|
return lib_path
|
|
|
|
|
|
def _load_lib():
|
|
"""Load xgboost Library."""
|
|
lib_path = find_lib_path()
|
|
if len(lib_path) == 0:
|
|
return None
|
|
lib = ctypes.cdll.LoadLibrary(lib_path[0])
|
|
lib.XGBGetLastError.restype = ctypes.c_char_p
|
|
return lib
|
|
|
|
|
|
# load the XGBoost library globally
|
|
_LIB = _load_lib()
|
|
|
|
def _check_call(ret):
|
|
"""Check the return value of C API call
|
|
|
|
This function will raise exception when error occurs.
|
|
Wrap every API call with this function
|
|
|
|
Parameters
|
|
----------
|
|
ret : int
|
|
return value from API calls
|
|
"""
|
|
if ret != 0:
|
|
raise XGBoostError(_LIB.XGBGetLastError())
|
|
|
|
|
|
def ctypes2numpy(cptr, length, dtype):
|
|
"""Convert a ctypes pointer array to a numpy array.
|
|
"""
|
|
if not isinstance(cptr, ctypes.POINTER(ctypes.c_float)):
|
|
raise RuntimeError('expected float pointer')
|
|
res = np.zeros(length, dtype=dtype)
|
|
if not ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0]):
|
|
raise RuntimeError('memmove failed')
|
|
return res
|
|
|
|
|
|
def ctypes2buffer(cptr, length):
|
|
"""Convert ctypes pointer to buffer type."""
|
|
if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)):
|
|
raise RuntimeError('expected char pointer')
|
|
res = bytearray(length)
|
|
rptr = (ctypes.c_char * length).from_buffer(res)
|
|
if not ctypes.memmove(rptr, cptr, length):
|
|
raise RuntimeError('memmove failed')
|
|
return res
|
|
|
|
|
|
def c_str(string):
|
|
"""Convert a python string to cstring."""
|
|
return ctypes.c_char_p(string.encode('utf-8'))
|
|
|
|
|
|
def c_array(ctype, values):
|
|
"""Convert a python string to c array."""
|
|
return (ctype * len(values))(*values)
|
|
|
|
|
|
class DMatrix(object):
|
|
"""Data Matrix used in XGBoost.
|
|
|
|
DMatrix is a internal data structure that used by XGBoost
|
|
which is optimized for both memory efficiency and training speed.
|
|
You can construct DMatrix from numpy.arrays
|
|
"""
|
|
|
|
feature_names = None # for previous version's pickle
|
|
|
|
def __init__(self, data, label=None, missing=0.0,
|
|
weight=None, silent=False, feature_names=None):
|
|
"""
|
|
Data matrix used in XGBoost.
|
|
|
|
Parameters
|
|
----------
|
|
data : string/numpy array/scipy.sparse
|
|
Data source of DMatrix.
|
|
When data is string type, it represents the path libsvm format txt file,
|
|
or binary file that xgboost can read from.
|
|
label : list or numpy 1-D array, optional
|
|
Label of the training data.
|
|
missing : float, optional
|
|
Value in the data which needs to be present as a missing value.
|
|
weight : list or numpy 1-D array , optional
|
|
Weight for each instance.
|
|
silent : boolean, optional
|
|
Whether print messages during construction
|
|
feature_names : list, optional
|
|
Labels for features.
|
|
"""
|
|
# force into void_p, mac need to pass things in as void_p
|
|
if data is None:
|
|
self.handle = None
|
|
return
|
|
if isinstance(data, STRING_TYPES):
|
|
self.handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGDMatrixCreateFromFile(c_str(data),
|
|
int(silent),
|
|
ctypes.byref(self.handle)))
|
|
elif isinstance(data, scipy.sparse.csr_matrix):
|
|
self._init_from_csr(data)
|
|
elif isinstance(data, scipy.sparse.csc_matrix):
|
|
self._init_from_csc(data)
|
|
elif isinstance(data, np.ndarray) and len(data.shape) == 2:
|
|
self._init_from_npy2d(data, missing)
|
|
else:
|
|
try:
|
|
csr = scipy.sparse.csr_matrix(data)
|
|
self._init_from_csr(csr)
|
|
except:
|
|
raise TypeError('can not intialize DMatrix from {}'.format(type(data).__name__))
|
|
if label is not None:
|
|
self.set_label(label)
|
|
if weight is not None:
|
|
self.set_weight(weight)
|
|
|
|
# validate feature name
|
|
if not isinstance(feature_names, list):
|
|
feature_names = list(feature_names)
|
|
if len(feature_names) != len(set(feature_names)):
|
|
raise ValueError('feature_names must be unique')
|
|
if len(feature_names) != self.num_col():
|
|
raise ValueError('feature_names must have the same length as data')
|
|
if not all(isinstance(f, STRING_TYPES) and f.isalnum()
|
|
for f in feature_names):
|
|
raise ValueError('all feature_names must be alphanumerics')
|
|
self.feature_names = feature_names
|
|
|
|
def _init_from_csr(self, csr):
|
|
"""
|
|
Initialize data from a CSR matrix.
|
|
"""
|
|
if len(csr.indices) != len(csr.data):
|
|
raise ValueError('length mismatch: {} vs {}'.format(len(csr.indices), len(csr.data)))
|
|
self.handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGDMatrixCreateFromCSR(c_array(ctypes.c_ulong, csr.indptr),
|
|
c_array(ctypes.c_uint, csr.indices),
|
|
c_array(ctypes.c_float, csr.data),
|
|
len(csr.indptr), len(csr.data),
|
|
ctypes.byref(self.handle)))
|
|
|
|
def _init_from_csc(self, csc):
|
|
"""
|
|
Initialize data from a CSC matrix.
|
|
"""
|
|
if len(csc.indices) != len(csc.data):
|
|
raise ValueError('length mismatch: {} vs {}'.format(len(csc.indices), len(csc.data)))
|
|
self.handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGDMatrixCreateFromCSC(c_array(ctypes.c_ulong, csc.indptr),
|
|
c_array(ctypes.c_uint, csc.indices),
|
|
c_array(ctypes.c_float, csc.data),
|
|
len(csc.indptr), len(csc.data),
|
|
ctypes.byref(self.handle)))
|
|
|
|
def _init_from_npy2d(self, mat, missing):
|
|
"""
|
|
Initialize data from a 2-D numpy matrix.
|
|
"""
|
|
data = np.array(mat.reshape(mat.size), dtype=np.float32)
|
|
self.handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGDMatrixCreateFromMat(data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
|
|
mat.shape[0], mat.shape[1],
|
|
ctypes.c_float(missing),
|
|
ctypes.byref(self.handle)))
|
|
|
|
def __del__(self):
|
|
_check_call(_LIB.XGDMatrixFree(self.handle))
|
|
|
|
def get_float_info(self, field):
|
|
"""Get float property from the DMatrix.
|
|
|
|
Parameters
|
|
----------
|
|
field: str
|
|
The field name of the information
|
|
|
|
Returns
|
|
-------
|
|
info : array
|
|
a numpy array of float information of the data
|
|
"""
|
|
length = ctypes.c_ulong()
|
|
ret = ctypes.POINTER(ctypes.c_float)()
|
|
_check_call(_LIB.XGDMatrixGetFloatInfo(self.handle,
|
|
c_str(field),
|
|
ctypes.byref(length),
|
|
ctypes.byref(ret)))
|
|
return ctypes2numpy(ret, length.value, np.float32)
|
|
|
|
def get_uint_info(self, field):
|
|
"""Get unsigned integer property from the DMatrix.
|
|
|
|
Parameters
|
|
----------
|
|
field: str
|
|
The field name of the information
|
|
|
|
Returns
|
|
-------
|
|
info : array
|
|
a numpy array of float information of the data
|
|
"""
|
|
length = ctypes.c_ulong()
|
|
ret = ctypes.POINTER(ctypes.c_uint)()
|
|
_check_call(_LIB.XGDMatrixGetUIntInfo(self.handle,
|
|
c_str(field),
|
|
ctypes.byref(length),
|
|
ctypes.byref(ret)))
|
|
return ctypes2numpy(ret, length.value, np.uint32)
|
|
|
|
def set_float_info(self, field, data):
|
|
"""Set float type property into the DMatrix.
|
|
|
|
Parameters
|
|
----------
|
|
field: str
|
|
The field name of the information
|
|
|
|
data: numpy array
|
|
The array ofdata to be set
|
|
"""
|
|
_check_call(_LIB.XGDMatrixSetFloatInfo(self.handle,
|
|
c_str(field),
|
|
c_array(ctypes.c_float, data),
|
|
len(data)))
|
|
|
|
def set_uint_info(self, field, data):
|
|
"""Set uint type property into the DMatrix.
|
|
|
|
Parameters
|
|
----------
|
|
field: str
|
|
The field name of the information
|
|
|
|
data: numpy array
|
|
The array ofdata to be set
|
|
"""
|
|
_check_call(_LIB.XGDMatrixSetUIntInfo(self.handle,
|
|
c_str(field),
|
|
c_array(ctypes.c_uint, data),
|
|
len(data)))
|
|
|
|
def save_binary(self, fname, silent=True):
|
|
"""Save DMatrix to an XGBoost buffer.
|
|
|
|
Parameters
|
|
----------
|
|
fname : string
|
|
Name of the output buffer file.
|
|
silent : bool (optional; default: True)
|
|
If set, the output is suppressed.
|
|
"""
|
|
_check_call(_LIB.XGDMatrixSaveBinary(self.handle,
|
|
c_str(fname),
|
|
int(silent)))
|
|
|
|
def set_label(self, label):
|
|
"""Set label of dmatrix
|
|
|
|
Parameters
|
|
----------
|
|
label: array like
|
|
The label information to be set into DMatrix
|
|
"""
|
|
self.set_float_info('label', label)
|
|
|
|
def set_weight(self, weight):
|
|
""" Set weight of each instance.
|
|
|
|
Parameters
|
|
----------
|
|
weight : array like
|
|
Weight for each data point
|
|
"""
|
|
self.set_float_info('weight', weight)
|
|
|
|
def set_base_margin(self, margin):
|
|
""" Set base margin of booster to start from.
|
|
|
|
This can be used to specify a prediction value of
|
|
existing model to be base_margin
|
|
However, remember margin is needed, instead of transformed prediction
|
|
e.g. for logistic regression: need to put in value before logistic transformation
|
|
see also example/demo.py
|
|
|
|
Parameters
|
|
----------
|
|
margin: array like
|
|
Prediction margin of each datapoint
|
|
"""
|
|
self.set_float_info('base_margin', margin)
|
|
|
|
def set_group(self, group):
|
|
"""Set group size of DMatrix (used for ranking).
|
|
|
|
Parameters
|
|
----------
|
|
group : array like
|
|
Group size of each group
|
|
"""
|
|
_check_call(_LIB.XGDMatrixSetGroup(self.handle,
|
|
c_array(ctypes.c_uint, group),
|
|
len(group)))
|
|
|
|
def get_label(self):
|
|
"""Get the label of the DMatrix.
|
|
|
|
Returns
|
|
-------
|
|
label : array
|
|
"""
|
|
return self.get_float_info('label')
|
|
|
|
def get_weight(self):
|
|
"""Get the weight of the DMatrix.
|
|
|
|
Returns
|
|
-------
|
|
weight : array
|
|
"""
|
|
return self.get_float_info('weight')
|
|
|
|
def get_base_margin(self):
|
|
"""Get the base margin of the DMatrix.
|
|
|
|
Returns
|
|
-------
|
|
base_margin : float
|
|
"""
|
|
return self.get_float_info('base_margin')
|
|
|
|
def num_row(self):
|
|
"""Get the number of rows in the DMatrix.
|
|
|
|
Returns
|
|
-------
|
|
number of rows : int
|
|
"""
|
|
ret = ctypes.c_ulong()
|
|
_check_call(_LIB.XGDMatrixNumRow(self.handle,
|
|
ctypes.byref(ret)))
|
|
return ret.value
|
|
|
|
def num_col(self):
|
|
"""Get the number of columns in the DMatrix.
|
|
|
|
Returns
|
|
-------
|
|
number of columns : int
|
|
"""
|
|
ret = ctypes.c_ulong()
|
|
_check_call(_LIB.XGDMatrixNumCol(self.handle,
|
|
ctypes.byref(ret)))
|
|
return ret.value
|
|
|
|
def slice(self, rindex):
|
|
"""Slice the DMatrix and return a new DMatrix that only contains `rindex`.
|
|
|
|
Parameters
|
|
----------
|
|
rindex : list
|
|
List of indices to be selected.
|
|
|
|
Returns
|
|
-------
|
|
res : DMatrix
|
|
A new DMatrix containing only selected indices.
|
|
"""
|
|
res = DMatrix(None, feature_names=self.feature_names)
|
|
res.handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGDMatrixSliceDMatrix(self.handle,
|
|
c_array(ctypes.c_int, rindex),
|
|
len(rindex),
|
|
ctypes.byref(res.handle)))
|
|
return res
|
|
|
|
|
|
class Booster(object):
|
|
""""A Booster of of XGBoost.
|
|
|
|
Booster is the model of xgboost, that contains low level routines for
|
|
training, prediction and evaluation.
|
|
"""
|
|
|
|
feature_names = None
|
|
|
|
def __init__(self, params=None, cache=(), model_file=None):
|
|
# pylint: disable=invalid-name
|
|
"""Initialize the Booster.
|
|
|
|
Parameters
|
|
----------
|
|
params : dict
|
|
Parameters for boosters.
|
|
cache : list
|
|
List of cache items.
|
|
model_file : string
|
|
Path to the model file.
|
|
"""
|
|
for d in cache:
|
|
if not isinstance(d, DMatrix):
|
|
raise TypeError('invalid cache item: {}'.format(type(d).__name__))
|
|
self._validate_feature_names(d)
|
|
dmats = c_array(ctypes.c_void_p, [d.handle for d in cache])
|
|
self.handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGBoosterCreate(dmats, len(cache), ctypes.byref(self.handle)))
|
|
self.set_param({'seed': 0})
|
|
self.set_param(params or {})
|
|
if model_file is not None:
|
|
self.load_model(model_file)
|
|
|
|
def __del__(self):
|
|
_LIB.XGBoosterFree(self.handle)
|
|
|
|
def __getstate__(self):
|
|
# can't pickle ctypes pointers
|
|
# put model content in bytearray
|
|
this = self.__dict__.copy()
|
|
handle = this['handle']
|
|
if handle is not None:
|
|
raw = self.save_raw()
|
|
this["handle"] = raw
|
|
return this
|
|
|
|
def __setstate__(self, state):
|
|
# reconstruct handle from raw data
|
|
handle = state['handle']
|
|
if handle is not None:
|
|
buf = handle
|
|
dmats = c_array(ctypes.c_void_p, [])
|
|
handle = ctypes.c_void_p()
|
|
_check_call(_LIB.XGBoosterCreate(dmats, 0, ctypes.byref(handle)))
|
|
length = ctypes.c_ulong(len(buf))
|
|
ptr = (ctypes.c_char * len(buf)).from_buffer(buf)
|
|
_check_call(_LIB.XGBoosterLoadModelFromBuffer(handle, ptr, length))
|
|
state['handle'] = handle
|
|
self.__dict__.update(state)
|
|
self.set_param({'seed': 0})
|
|
|
|
def __copy__(self):
|
|
return self.__deepcopy__()
|
|
|
|
def __deepcopy__(self):
|
|
return Booster(model_file=self.save_raw())
|
|
|
|
def copy(self):
|
|
"""Copy the booster object.
|
|
|
|
Returns
|
|
-------
|
|
booster: `Booster`
|
|
a copied booster model
|
|
"""
|
|
return self.__copy__()
|
|
|
|
def set_param(self, params, value=None):
|
|
"""Set parameters into the Booster.
|
|
|
|
Parameters
|
|
----------
|
|
params: dict/list/str
|
|
list of key,value paris, dict of key to value or simply str key
|
|
value: optional
|
|
value of the specified parameter, when params is str key
|
|
"""
|
|
if isinstance(params, collections.Mapping):
|
|
params = params.items()
|
|
elif isinstance(params, STRING_TYPES) and value is not None:
|
|
params = [(params, value)]
|
|
for key, val in params:
|
|
_check_call(_LIB.XGBoosterSetParam(self.handle, c_str(key), c_str(str(val))))
|
|
|
|
def update(self, dtrain, iteration, fobj=None):
|
|
"""
|
|
Update for one iteration, with objective function calculated internally.
|
|
|
|
Parameters
|
|
----------
|
|
dtrain : DMatrix
|
|
Training data.
|
|
iteration : int
|
|
Current iteration number.
|
|
fobj : function
|
|
Customized objective function.
|
|
"""
|
|
if not isinstance(dtrain, DMatrix):
|
|
raise TypeError('invalid training matrix: {}'.format(type(dtrain).__name__))
|
|
self._validate_feature_names(dtrain)
|
|
|
|
if fobj is None:
|
|
_check_call(_LIB.XGBoosterUpdateOneIter(self.handle, iteration, dtrain.handle))
|
|
else:
|
|
pred = self.predict(dtrain)
|
|
grad, hess = fobj(pred, dtrain)
|
|
self.boost(dtrain, grad, hess)
|
|
|
|
def boost(self, dtrain, grad, hess):
|
|
"""
|
|
Boost the booster for one iteration, with customized gradient statistics.
|
|
|
|
Parameters
|
|
----------
|
|
dtrain : DMatrix
|
|
The training DMatrix.
|
|
grad : list
|
|
The first order of gradient.
|
|
hess : list
|
|
The second order of gradient.
|
|
"""
|
|
if len(grad) != len(hess):
|
|
raise ValueError('grad / hess length mismatch: {} / {}'.format(len(grad), len(hess)))
|
|
if not isinstance(dtrain, DMatrix):
|
|
raise TypeError('invalid training matrix: {}'.format(type(dtrain).__name__))
|
|
self._validate_feature_names(dtrain)
|
|
|
|
_check_call(_LIB.XGBoosterBoostOneIter(self.handle, dtrain.handle,
|
|
c_array(ctypes.c_float, grad),
|
|
c_array(ctypes.c_float, hess),
|
|
len(grad)))
|
|
|
|
def eval_set(self, evals, iteration=0, feval=None):
|
|
# pylint: disable=invalid-name
|
|
"""Evaluate a set of data.
|
|
|
|
Parameters
|
|
----------
|
|
evals : list of tuples (DMatrix, string)
|
|
List of items to be evaluated.
|
|
iteration : int
|
|
Current iteration.
|
|
feval : function
|
|
Custom evaluation function.
|
|
|
|
Returns
|
|
-------
|
|
result: str
|
|
Evaluation result string.
|
|
"""
|
|
if feval is None:
|
|
for d in evals:
|
|
if not isinstance(d[0], DMatrix):
|
|
raise TypeError('expected DMatrix, got {}'.format(type(d[0]).__name__))
|
|
if not isinstance(d[1], STRING_TYPES):
|
|
raise TypeError('expected string, got {}'.format(type(d[1]).__name__))
|
|
self._validate_feature_names(d)
|
|
|
|
dmats = c_array(ctypes.c_void_p, [d[0].handle for d in evals])
|
|
evnames = c_array(ctypes.c_char_p, [c_str(d[1]) for d in evals])
|
|
msg = ctypes.c_char_p()
|
|
_check_call(_LIB.XGBoosterEvalOneIter(self.handle, iteration,
|
|
dmats, evnames, len(evals),
|
|
ctypes.byref(msg)))
|
|
return msg.value
|
|
else:
|
|
res = '[%d]' % iteration
|
|
for dmat, evname in evals:
|
|
name, val = feval(self.predict(dmat), dmat)
|
|
res += '\t%s-%s:%f' % (evname, name, val)
|
|
return res
|
|
|
|
def eval(self, data, name='eval', iteration=0):
|
|
"""Evaluate the model on mat.
|
|
|
|
Parameters
|
|
----------
|
|
data : DMatrix
|
|
The dmatrix storing the input.
|
|
|
|
name : str, optional
|
|
The name of the dataset.
|
|
|
|
iteration : int, optional
|
|
The current iteration number.
|
|
|
|
Returns
|
|
-------
|
|
result: str
|
|
Evaluation result string.
|
|
"""
|
|
self._validate_feature_names(data)
|
|
return self.eval_set([(data, name)], iteration)
|
|
|
|
def predict(self, data, output_margin=False, ntree_limit=0, pred_leaf=False):
|
|
"""
|
|
Predict with data.
|
|
|
|
NOTE: This function is not thread safe.
|
|
For each booster object, predict can only be called from one thread.
|
|
If you want to run prediction using multiple thread, call bst.copy() to make copies
|
|
of model object and then call predict
|
|
|
|
Parameters
|
|
----------
|
|
data : DMatrix
|
|
The dmatrix storing the input.
|
|
|
|
output_margin : bool
|
|
Whether to output the raw untransformed margin value.
|
|
|
|
ntree_limit : int
|
|
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
|
|
|
pred_leaf : bool
|
|
When this option is on, the output will be a matrix of (nsample, ntrees)
|
|
with each record indicating the predicted leaf index of each sample in each tree.
|
|
Note that the leaf index of a tree is unique per tree, so you may find leaf 1
|
|
in both tree 1 and tree 0.
|
|
|
|
Returns
|
|
-------
|
|
prediction : numpy array
|
|
"""
|
|
option_mask = 0x00
|
|
if output_margin:
|
|
option_mask |= 0x01
|
|
if pred_leaf:
|
|
option_mask |= 0x02
|
|
|
|
self._validate_feature_names(data)
|
|
|
|
length = ctypes.c_ulong()
|
|
preds = ctypes.POINTER(ctypes.c_float)()
|
|
_check_call(_LIB.XGBoosterPredict(self.handle, data.handle,
|
|
option_mask, ntree_limit,
|
|
ctypes.byref(length),
|
|
ctypes.byref(preds)))
|
|
preds = ctypes2numpy(preds, length.value, np.float32)
|
|
if pred_leaf:
|
|
preds = preds.astype(np.int32)
|
|
nrow = data.num_row()
|
|
if preds.size != nrow and preds.size % nrow == 0:
|
|
preds = preds.reshape(nrow, preds.size / nrow)
|
|
return preds
|
|
|
|
def save_model(self, fname):
|
|
"""
|
|
Save the model to a file.
|
|
|
|
Parameters
|
|
----------
|
|
fname : string
|
|
Output file name
|
|
"""
|
|
if isinstance(fname, STRING_TYPES): # assume file name
|
|
_check_call(_LIB.XGBoosterSaveModel(self.handle, c_str(fname)))
|
|
else:
|
|
raise TypeError("fname must be a string")
|
|
|
|
def save_raw(self):
|
|
"""
|
|
Save the model to a in memory buffer represetation
|
|
|
|
Returns
|
|
-------
|
|
a in memory buffer represetation of the model
|
|
"""
|
|
length = ctypes.c_ulong()
|
|
cptr = ctypes.POINTER(ctypes.c_char)()
|
|
_check_call(_LIB.XGBoosterGetModelRaw(self.handle,
|
|
ctypes.byref(length),
|
|
ctypes.byref(cptr)))
|
|
return ctypes2buffer(cptr, length.value)
|
|
|
|
def load_model(self, fname):
|
|
"""
|
|
Load the model from a file.
|
|
|
|
Parameters
|
|
----------
|
|
fname : string or a memory buffer
|
|
Input file name or memory buffer(see also save_raw)
|
|
"""
|
|
if isinstance(fname, str): # assume file name
|
|
_LIB.XGBoosterLoadModel(self.handle, c_str(fname))
|
|
else:
|
|
buf = fname
|
|
length = ctypes.c_ulong(len(buf))
|
|
ptr = (ctypes.c_char * len(buf)).from_buffer(buf)
|
|
_check_call(_LIB.XGBoosterLoadModelFromBuffer(self.handle, ptr, length))
|
|
|
|
def dump_model(self, fout, fmap='', with_stats=False):
|
|
"""
|
|
Dump model into a text file.
|
|
|
|
Parameters
|
|
----------
|
|
foout : string
|
|
Output file name.
|
|
fmap : string, optional
|
|
Name of the file containing feature map names.
|
|
with_stats : bool (optional)
|
|
Controls whether the split statistics are output.
|
|
"""
|
|
if isinstance(fout, STRING_TYPES):
|
|
fout = open(fout, 'w')
|
|
need_close = True
|
|
else:
|
|
need_close = False
|
|
ret = self.get_dump(fmap, with_stats)
|
|
for i in range(len(ret)):
|
|
fout.write('booster[{}]:\n'.format(i))
|
|
fout.write(ret[i])
|
|
if need_close:
|
|
fout.close()
|
|
|
|
def get_dump(self, fmap='', with_stats=False):
|
|
"""
|
|
Returns the dump the model as a list of strings.
|
|
"""
|
|
res = []
|
|
length = ctypes.c_ulong()
|
|
sarr = ctypes.POINTER(ctypes.c_char_p)()
|
|
_check_call(_LIB.XGBoosterDumpModel(self.handle,
|
|
c_str(fmap),
|
|
int(with_stats),
|
|
ctypes.byref(length),
|
|
ctypes.byref(sarr)))
|
|
for i in range(length.value):
|
|
res.append(str(sarr[i].decode('ascii')))
|
|
|
|
if self.feature_names is not None:
|
|
defaults = ['f{0}'.format(i) for i in
|
|
range(len(self.feature_names))]
|
|
rep = dict((re.escape(k), v) for k, v in
|
|
zip(defaults, self.feature_names))
|
|
pattern = re.compile("|".join(rep))
|
|
def _replace(expr):
|
|
""" Replace matched group to corresponding values """
|
|
return pattern.sub(lambda m: rep[re.escape(m.group(0))], expr)
|
|
res = [_replace(r) for r in res]
|
|
return res
|
|
|
|
def get_fscore(self, fmap=''):
|
|
"""Get feature importance of each feature.
|
|
|
|
Parameters
|
|
----------
|
|
fmap: str (optional)
|
|
The name of feature map file
|
|
"""
|
|
trees = self.get_dump(fmap)
|
|
fmap = {}
|
|
for tree in trees:
|
|
for line in tree.split('\n'):
|
|
arr = line.split('[')
|
|
if len(arr) == 1:
|
|
continue
|
|
fid = arr[1].split(']')[0]
|
|
fid = fid.split('<')[0]
|
|
if fid not in fmap:
|
|
fmap[fid] = 1
|
|
else:
|
|
fmap[fid] += 1
|
|
return fmap
|
|
|
|
def _validate_feature_names(self, data):
|
|
"""
|
|
Validate Booster and data's feature_names are identical
|
|
"""
|
|
if self.feature_names is None:
|
|
self.feature_names = data.feature_names
|
|
else:
|
|
# Booster can't accept data with different feature names
|
|
if self.feature_names != data.feature_names:
|
|
msg = 'feature_names mismatch: {0} {1}'
|
|
raise ValueError(msg.format(self.feature_names,
|
|
data.feature_names))
|
|
|