- Use the `linalg::Matrix` for storing gradients. - New API for the custom objective. - Custom objective for multi-class/multi-target is now required to return the correct shape. - Custom objective for Python can accept arrays with any strides. (row-major, column-major)
90 lines
2.9 KiB
C++
90 lines
2.9 KiB
C++
/**
|
|
* Copyright 2018-2023 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/host_device_vector.h>
|
|
#include <xgboost/learner.h>
|
|
#include <xgboost/tree_updater.h>
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "../../../src/tree/param.h" // for TrainParam
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost::tree {
|
|
TEST(Updater, Prune) {
|
|
int constexpr kCols = 16;
|
|
|
|
std::vector<std::pair<std::string, std::string>> cfg;
|
|
cfg.emplace_back("num_feature", std::to_string(kCols));
|
|
cfg.emplace_back("min_split_loss", "10");
|
|
Context ctx;
|
|
|
|
// These data are just place holders.
|
|
linalg::Matrix<GradientPair> gpair
|
|
{{ {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f},
|
|
{0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f} }, {8, 1}, ctx.Device()};
|
|
std::shared_ptr<DMatrix> p_dmat{RandomDataGenerator{32, 10, 0}.GenerateDMatrix()};
|
|
|
|
// prepare tree
|
|
RegTree tree = RegTree{1u, kCols};
|
|
std::vector<RegTree*> trees {&tree};
|
|
// prepare pruner
|
|
TrainParam param;
|
|
param.UpdateAllowUnknown(cfg);
|
|
|
|
ObjInfo task{ObjInfo::kRegression};
|
|
std::unique_ptr<TreeUpdater> pruner(TreeUpdater::Create("prune", &ctx, &task));
|
|
|
|
// loss_chg < min_split_loss;
|
|
std::vector<HostDeviceVector<bst_node_t>> position(trees.size());
|
|
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 0.0f, 0.0f,
|
|
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
|
|
pruner->Update(¶m, &gpair, p_dmat.get(), position, trees);
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 0);
|
|
|
|
// loss_chg > min_split_loss;
|
|
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 11.0f, 0.0f,
|
|
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
|
|
pruner->Update(¶m, &gpair, p_dmat.get(), position, trees);
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
|
|
// loss_chg == min_split_loss;
|
|
tree.Stat(0).loss_chg = 10;
|
|
pruner->Update(¶m, &gpair, p_dmat.get(), position, trees);
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
|
|
// Test depth
|
|
// loss_chg > min_split_loss
|
|
tree.ExpandNode(tree[0].LeftChild(),
|
|
0, 0.5f, true, 0.3, 0.4, 0.5,
|
|
/*loss_chg=*/18.0f, 0.0f,
|
|
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
|
|
tree.ExpandNode(tree[0].RightChild(),
|
|
0, 0.5f, true, 0.3, 0.4, 0.5,
|
|
/*loss_chg=*/19.0f, 0.0f,
|
|
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
|
|
|
|
cfg.emplace_back("max_depth", "1");
|
|
param.UpdateAllowUnknown(cfg);
|
|
pruner->Update(¶m, &gpair, p_dmat.get(), position, trees);
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
|
|
tree.ExpandNode(tree[0].LeftChild(),
|
|
0, 0.5f, true, 0.3, 0.4, 0.5,
|
|
/*loss_chg=*/18.0f, 0.0f,
|
|
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
|
|
cfg.emplace_back("min_split_loss", "0");
|
|
param.UpdateAllowUnknown(cfg);
|
|
|
|
pruner->Update(¶m, &gpair, p_dmat.get(), position, trees);
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
}
|
|
} // namespace xgboost::tree
|