xgboost/tests/cpp/tree/test_prune.cc
Jiaming Yuan d9a47794a5 Fix CPU hist init for sparse dataset. (#4625)
* Fix CPU hist init for sparse dataset.

* Implement sparse histogram cut.
* Allow empty features.

* Fix windows build, don't use sparse in distributed environment.

* Comments.

* Smaller threshold.

* Fix windows omp.

* Fix msvc lambda capture.

* Fix MSVC macro.

* Fix MSVC initialization list.

* Fix MSVC initialization list x2.

* Preserve categorical feature behavior.

* Rename matrix to sparse cuts.
* Reuse UseGroup.
* Check for categorical data when adding cut.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>

* Sanity check.

* Fix comments.

* Fix comment.
2019-07-04 16:27:03 -07:00

65 lines
1.8 KiB
C++

/*!
* Copyright 2018-2019 by Contributors
*/
#include "../helpers.h"
#include "../../../src/common/host_device_vector.h"
#include <xgboost/tree_updater.h>
#include <gtest/gtest.h>
#include <vector>
#include <string>
#include <memory>
namespace xgboost {
namespace tree {
TEST(Updater, Prune) {
int constexpr kNCols = 16;
std::vector<std::pair<std::string, std::string>> cfg;
cfg.emplace_back(std::pair<std::string, std::string>(
"num_feature", std::to_string(kNCols)));
cfg.emplace_back(std::pair<std::string, std::string>(
"min_split_loss", "10"));
cfg.emplace_back(std::pair<std::string, std::string>(
"silent", "1"));
// These data are just place holders.
HostDeviceVector<GradientPair> gpair =
{ {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f},
{0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f} };
auto dmat = CreateDMatrix(32, 16, 0.4, 3);
auto lparam = CreateEmptyGenericParam(0, 0);
// prepare tree
RegTree tree = RegTree();
tree.param.InitAllowUnknown(cfg);
std::vector<RegTree*> trees {&tree};
// prepare pruner
std::unique_ptr<TreeUpdater> pruner(TreeUpdater::Create("prune", &lparam));
pruner->Init(cfg);
// loss_chg < min_split_loss;
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 0.0f, 0.0f);
pruner->Update(&gpair, dmat->get(), trees);
ASSERT_EQ(tree.NumExtraNodes(), 0);
// loss_chg > min_split_loss;
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 11.0f, 0.0f);
pruner->Update(&gpair, dmat->get(), trees);
ASSERT_EQ(tree.NumExtraNodes(), 2);
// loss_chg == min_split_loss;
tree.Stat(0).loss_chg = 10;
pruner->Update(&gpair, dmat->get(), trees);
ASSERT_EQ(tree.NumExtraNodes(), 2);
delete dmat;
}
} // namespace tree
} // namespace xgboost